Home General Physiology and Biophysics 2018 General Physiology and Biophysics Vol.37, No.4, p.391–398, 2018

Journal info


Quarterly, 80 pp. per issue
Founded: 1982
ISSN  1338-4325 (online)

Published in English

Aims and Scope
Editorial Info
Abstracting and Indexing
Submission Guidelines

Select Journal







Webshop Cart

Your Cart is currently empty.


General Physiology and Biophysics Vol.37, No.4, p.391–398, 2018

Title: Involvement of calcium regulating ion channels in contractility of human isolated urinary bladder
Author: J. Luptak, M. Kocmalova, S. Franova, J. Sutovsky, M. Grendar, J. Svihra, J. Kliment Sr, R. Dusenka, M. Sutovska

Abstract: This study specified the role of several key calcium-operating ion channels in contraction/relaxation of human detrusor muscle as possible target for overactive bladder (OAB) treatment. Detrusor samples, obtained from 18 males (average age 61.5 ± 5.9 years), were investigated by organ tissue bath method with following agents: diltiazem for L-type voltage-gated calcium channels; 3-fluropyridine-4-carboxylic acid (FPCA) for Orai-STIM channels; SKF 96365-hydrochloride for transient receptor potential (TRP) channels, T-type channels and Orai-STIM channels; 2- aminoethoxydiphenyl borate (2-APB) for inositol-triphosphate receptors (IP3Rs) and Orai-STIM channels. Oxybutynin and mirabegron were tested under the same conditions as controls. Mirabegron, 2-APB and FPCA exhibited the best suppressive effect on carbachol-induced detrusor contractility. As expressed by area under the contractile curve (AUCC), 2-APB, FPCA and mirabegron have similar AUCC: 1.79, 1.73, 1.73. The highest AUCC was 3.64 for diltiazem+SKF, followed by 3.21 for diltiazem, 3.16 for SKF and 2.94 for oxybutynin. The lowest median amplitude and contraction variability is for 2-APB followed by mirabegron and FPCA. There were significant differences between: 2-APB/FPCA vs.: ditiazem, diltiazem+SKF and SKF. Summary of results suggested the principal role of IP3Rs, Orai-STIM coupling and large-conductance calcium-activated potassium channels in detrusor contraction and pointed on Orai-STIM channels as possible targets for OAB pharmacotherapy.

Keywords: Overactive bladder, Smooth muscle, Calcium ion channels, Orai-STIM pathway, Organ tissue bath
Published online: 17-Jul-2018
Year: 2018, Volume: 37, Issue: 4 Page From: 391, Page To: 398
doi:10.4149/gpb_2017064


download file



© AEPress s.r.o
Copyright notice: For any permission to reproduce, archive or otherwise use the documents in the ELiS, please contact AEP.