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Discovery of natural mouse serum derived HIV-1 entry inhibitor(s) 
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Summary.  –  Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse 
natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled 
supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity 
after trypsin digestion. Further analysis demonstrated that only the fraction containing 10–25 K proteins could 
inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10–25 K protein(s) is novel natural HIV-1 
entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in 
mouse serum. 
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Introduction

The human immunodeficiency virus (HIV), which at-
tacks the function of immune cells, continues to be a threat 
to global public health (http://www.who.int/mediacentre/
factsheets/fs360/en/). Up to now, effective and safe HIV vac-
cine is still absent. In the attempts to restrain HIV infection, an 
increasing body of studies has focused on the development of 
antiretroviral drugs targeting multistep process of HIV entry 
(Henrich and Kuritzkes, 2013). HIV entry is initiated by in-
teraction of CD4 on the T-cell surface and gp120, a subunit of 
an envelope glycoprotein spike. This interaction subsequently 
triggers gp120 conformational changes that permit binding 
to a chemokine receptor CXCR4 or CCR5, leading to gp41 
fusion complex formation and cell fusion (Courter et al., 2014; 
Henrich and Kuritzkes, 2013). Efforts to develop the rationally 
designed HIV entry inhibitors lead to the appearance of two 

antiretroviral drugs approved for clinical use, i.e. Enfuvirtide 
(T20), a  HR2-based fusion inhibitor (Champagne et al., 
2009; Kilby et al., 1998; Matthews et al., 2004) and Maraviroc, 
a CCR5 antagonist (Dorr et al., 2005).

Among designed antiretroviral drugs, a wide range of nat-
ural anti-HIV factors in human blood have been identified. 
It is proposed that a variant of hemofiltrate CC chemokine 
(HCC)-1, a common component of healthy human plasma, 
is a potent CCR5 agonist which is able to block HIV-1 entry 
(Detheux et al., 2000). The group of Frank Kirchhoff identi-
fied a natural efficient inhibitor of the HIV-1 gp41 fusion 
peptide named VIRIP through a  systematic screening of 
peptide library generated from human hemofiltrate (Munch 
et al., 2007). Through screening of hemofiltrate-derived 
peptide library, this group also discovered another endog-
enous effective and specific CXCR4 antagonist, a 16 amino 
acid long fragment of serum albumin, the most abundant 
protein in human plasma, as an inhibitor of CXCR4-tropic 
HIV-1 (Zirafi et al., 2015). Moreover, it has been reported 
that Palmitic acid (PA), which was isolated from Sargas-
sum fusiforme, inhibited HIV entry through interference 
in gp120-CD4 interaction (Lee et al., 2009; Paskaleva et al., 
2010). Besides Sargassum fusiforme, PA is also present in 
human plasma as one of the most common saturated fatty 
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acids (Denke and Grundy, 1992). All these studies indicate 
that antiviral factors circulating in human blood can be used 
as novel therapeutic and prevention agents to block HIV-1 
replication. 

Serum is component of blood without white blood cells, 
red blood cells and clotting factors. It contains soluble proteins 
and various small molecules, i.e. serum albumins, globulins, 
transferrin, haptoglobin, lipoproteins, electrolytes, antibodies, 
antigens, hormones, and any exogenous substances (Adkins 
et al., 2002). Blood serum is the most abundant library of 
biomarkers, whether for diagnostics or therapeutics.

In this study, we focused on the healthy mouse serum 
in attempt to identify novel natural HIV-1 inhibitor(s). 
Interestingly, only the supernatant of mouse serum heated 
at 99°C had the ability to inhibit HIV-1 entry. Furthermore, 
after digestion by trypsin the inhibitory activity of the HIV-1 
inhibitor(s) decreased, so we have proved that the inhibi-
tor is protein. The supernatant of mouse serum heated at 
99°C was separated by size-based fast performance liquid 
chromatography (FPLC). We have finally identified that 
proteins with molecular weight range of 10–25 K residing in 
supernatant were the most potent fraction to inhibit HIV-1 
entry. Thus we found novel natural healthy mouse serum 
derived HIV-1 inhibitor(s). 

Materials and Methods

Heat treatment of serum. Blood of 12–14-week-old C57 mice 
was collected from retro-orbital plexus. To obtain serum, blood 
was left to sediment at 37°C for 30 min, and then 6 hours prior to 
centrifugation at 1,500 × g for 5 min three times, kept at 4°C to 
obtain serum. Serum was heated at 37°C, 56°C, and 99°C for 1 hr 
at each temperature and centrifuged at 12,000 × g for 10 min to 
separate the supernatant and sediment.

Inhibition of HIV-1 mediated cell-cell fusion. A  dye transfer 
assay as previously described was used to detect HIV-1 mediated 
cell-cell fusion (Jiang et al., 1993). HIV-1IIIB-infected H9 (H9/IIIB) 
and MT-2 cells were obtained from NIH AIDS Research and Ref-
erence Reagent Program. Calcein-AM-labeled H9/IIIB cells (2.0 
× 105/ml) cultured in 96-well plate were incubated with or without 
50 µl of serum at a serial 2-fold dilutions using 1×PBS at 37°C for 
45 min before adding 100 μl of MT-2 cells (106/ml). After addi-
tional co-incubation for 2 hr, the fused and unfused calcein-labeled 
HIV-1-infected cells were counted under an inverted fluorescence 
microscope (Zeiss). The inhibition percentage of cell-cell fusion 
and the IC50 values were calculated using previously developed 
methods (Jiang et al., 2004).

Serum digestion by trypsin. Samples were treated with same 
volume of 0.25% trypsin at 37°C for 30 min.

Separation of serum fractions. Different fractions of serum heated 
at 99°C were separated for size-based fast protein liquid chroma-
tography (FPLC) using a superose 12 10/300 GL high performance 

Fig. 1

Inhibitory activity of serum heated at different temperatures to HIV-1 
mediated cell-cell fusion

(a) SDS-PAGE of mouse serum heated at different temperatures. Protein 
size marker (lane M). Serum was heated at 37°C (lane 1), 56°C (lane 2), 
and 99°C (lane 3). The supernatant of serum heated at 99°C (lane 4). (b) 
The anti-HIV-1 entry activities of mouse serum with different temperature 
treatment were determined using the HIV-1-mediated cell-cell fusion assay. 
Each sample was tested in triplicates and was presented in mean ± SD.

column (GE Healthcare). As a mobile phase we have used 1× PBS, 
with flow rate 0.8 ml/min, and the analytes were detected at the 
wavelength of 280 nm. 

Results

Serum heated at 99°C effectively inhibited HIV-1 medi-
ated cell-cell fusion

Mouse serum was heated at 37°C, 56°C, and 99°C  
(Fig. 1a, lanes 1, 2, 3). The relative amount of proteins with MW 
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higher than 55 K was significantly reduced after heating at 99°C 
(Fig. 1a, lanes 3, 4). The inhibitory activity to HIV-1 entry was 
detected by using HIV-1 mediated cell-cell fusion assay. No-
tably, the serum heated at 99°C and its supernatant effectively 
inhibited HIV-1 mediated cell-cell fusion compared with serum 
heated at 37°C or 56°C. Moreover, the inhibition percentage of 
cell-cell fusion was up to 80% even though the serum heated at 
99°C and its supernatant were diluted 160-fold. (Fig. 1b).

Proteins in serum heated at 99°C were the primary 
HIV-1 mediated cell-cell fusion inhibitors

Except proteins, serum contains various small molecules 
including salts, lipids, and sugars. To investigate whether the 

active substances residing in supernatant of serum heated 
at 99°C were proteins, we digested serum by trypsin. Most 
of high molecular weight (MW) proteins (size >55 K) were 
digested to low MW proteins (size <25 K) (Fig. 2a), accom-
panied by the loss of inhibitory activity to HIV-1 mediated 
cell-cell fusion (Fig. 2b). These results suggested that the 
active substances in supernatant of serum heated at 99°C 
were proteins. 

Inhibitory activity of low molecular weight peptides in 
serum heated at 99°C to HIV-1 mediated cell-cell fusion 

Different fractions of supernatant from serum heated at 
99°C were separated with FPLC to further analyze the inhibi-

Fig. 2

The inhibitory activity of proteins of serum heated at 99°C to HIV-1 
mediated cell-cell fusion 

(a) SDS-PAGE of trypsin (lane 1); serum heated at 99°C and digested by 
trypsin (lane 2); serum heated at 99°C (lane 3). Protein size marker (lane 
M). (b) The anti-HIV-1-mediated cell-cell fusion activities of serum heated 
at 99°C and serum heated at 99°C and digested by trypsin. 

Fig. 3

Inhibitory activity of different molecular weight proteins in serum 
heated at 99°C to HIV-1 mediated cell-cell fusion 

(a) Different fractions of serum heated at 99°C (lane 1) were separated by 
size-based FPLC. Protein size marker (lane M). Fraction 1 (F1 lane 2); F2 
(lane 3); F3 (lane 4). (b) The anti-HIV-1-mediated cell-cell fusion activities 
of F1, F2, F3, and F3 digested by trypsin.
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tory activity of the HIV-1 entry inhibitor(s). Three fractions 
of different MW were collected as shown in Fig. 3a (lane 1, 2, 
3). MW higher than 55 K fraction (F1), MW range of 25–55 
K fraction (F2), and MW less than 25 K fraction (F3) were 
separated. Particularly, the F3 proteins, with size range of 
10–15 K, exhibited inhibitory activity against HIV-1 medi-
ated cell-cell fusion with IC50 of 40 μg in a dose-dependent 
manner (Fig. 3b). However, the inhibitory activity decreased 
after trypsin treatment. These data indicated that F3 was the 
most potent fraction to inhibit HIV-1 entry.

Discussion

Mice can be infected by retrovirus such as the LP-BM5 
retrovirus which causes murine acquired immunodefi-
ciency (MAIDS) (Buller et al., 1987; O'Connor et al., 2016) 
and murine leukemia virus (MLV) which has the ability to 
cause cancer in murine hosts. The mechanism of LP-BM5 
pathogenesis has not been fully understood to date. The 
maturation of MLV envelop precursor protein (80 K trimeric 
transmembrane protein) is promoted by two cleavage events. 
The cellular furin cleaves the precursor into surface (SU) 
subunit and transmembrane (TM) subunit, and then the 
viral protease removes the R-peptide from the TM (Ng et 
al., 1982). The second cleavage is necessary to prime MLV 
entry because R-peptide binds the TM legs together and 
hinders conformational changes in the fusion progression 
(Loving et al., 2012). 

There are several differences between MLV and HIV-1 
entry process. MLV envelope mediated cell fusion is pH-
independent (Ragheb and Anderson, 1994), while vesicle 
fusion mediated by HIV gp41 ectodomain is pH-dependent 
(Ratnayake et al., 2015; Sackett et al., 2011). It has been 
reported that the entry of amphotropic MLV takes place 
through macropinocytosis which is independent of coat 
proteins (Rasmussen and Vilhardt, 2015). Nevertheless, 
HIV-1 utilizes clathrin-coated-pit endocytosis and plasma 
membrane fusion pathways to enter host cells (Janas et al., 
2008). 

HIV-1 entry inhibitor blocks virus entry into the target 
cells and thereby intervenes in the HIV-1 life cycle at an early 
stage and subsequently limits viral replication and spread. 
Nevertheless, the clinical application of T20 peptide, the 
first U.S. FDA-approved HIV entry inhibitor, is limited by 
the high drug dosage (90 mg) and T20 resistance-related 
mutations (Oliveira et al., 2009). Therefore, it is essential to 
develop novel HIV-1 entry inhibitors. 

Although most of studies focus on the antiviral factors 
involved in the immune system of HIV-infected individuals 
(Alcena et al., 2013; Andrabi et al., 2014; Gach et al., 2014), 
the antiviral factors like broadly neutralizing antibodies are 
found only in a limited extent of persons who are infected 

for many years, and majority of the neutralizing antibod-
ies are strain-specific and can suppress autologous virus 
but not heterologous virus. It is necessary to develop more 
ubiquitous and effective HIV-1 inhibitor. Up to now, several 
natural small molecular peptides in human blood and tissues 
have been identified as HIV-1 entry inhibitors (Munch et al., 
2007; Zirafi et al., 2015). However, it is tough to purify and 
characterize the endogenous antiviral factors circulating in 
the human body. For example, the specific antiviral factor(s) 
released from CD8+ T cells has not been identified although 
the factor(s) has been described for years (Chang et al., 2002; 
Levy, 2003). Nevertheless, this antiviral factor(s) has distinct 
biochemical and physical properties including size range of 
10–15 K, resistance to heat (86°C, 10 min) and to low pH 
(2.0) (Levy, 2003).

In this study, we proved that there is a potential HIV-1 
entry inhibitor(s) in healthy mouse serum heated at 99°C. 
The entry inhibitor(s) was resistant to heat similarly to the 
antiviral factor(s) released from CD8+ T cells. Further analy-
sis demonstrated that the low molecular weight protein(s) 
was the most potent suppressor(s). In addition to mouse 
serum, the proteins (10–15 K) in calf, rabbit, and human 
serum after 99°C heating could also prevent HIV-1 medi-
ated cell-cell fusion (data not shown), revealing that there 
are some antiviral factors in serum of other mammals. These 
results enlighten us that there may probably be some com-
mon and conservative antiretroviral proteins/peptides cir-
culating in mammal serum. Based on the mass spectrometry 
of proteins from fraction 3 (unpublished data), we confirm 
that this natural HIV inhibitor(s) is still not discovered by 
other groups. The specific HIV inhibitory factor(s) will be 
addressed in ongoing studies.

In conclusion, the evidence presented in this work sug-
gests that low molecular weight protein(s) in mouse serum 
heated at 99°C is potential HIV-1 entry inhibitor(s). Our 
study provided significant information on discovery of novel 
natural HIV-1 entry inhibitor.
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