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Abstract. Tumors of brain tissue and meninges create a heterogeneous group with various biologi-
cal behavior, therapy management and differing prognosis. Some of these do not require treatment,
some can be cured by surgery and some are rapidly fatal despite treatment. Despite huge progress in 
tumor research, innovations in diagnostic tools and therapy, prognosis remains, in case of malignant 
tumor types, very serious. There has been an increased understanding of molecular abnormalities
occurring in primary brain tumors. Genome-wide analyses of tumors have improved the knowledge 
in tumor biology. The aim of the research is to explain the oncogenesis features thus leading to the
use of new therapeutic modalities in order to prolong survival rate of patients and at the same time 
providing satisfactory life quality. This article offers a short review of the basic genetic alterations
present with some histological types of brain tumors.
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Introduction

Intracranial tumors considerably contribute to morbidity 
and mortality in patients. These consist of cells whose differ-
entiation and cell division spin out of control. Their etiology
is multifactorial. The tumors take their origin as a result 

of an accumulation of various genetic alterations which al-
low the cells to escape physiological regulatory mechanisms 
and their destruction by the immune system cells (Wrensch 
et al. 2002). Despite a huge amount of potential risk factors 
for tumorigenesis, only 3 of them had been verified: some
hereditary syndromes (neurofibromatosis type 1 and 2,
Turcot, Li-Fraumeni, Cowden syndrome, etc), radiation 
exposure (including therapeutic exposition) and severe 
immunosupression are confirmed as a risk factor of brain
lymphomas. But these identified factors are responsible only
for a small amount of tumors (Fisher et al. 2007; Bondy 

mailto:romana.richterova@gmail.com


260 Richterová et al.

et al. 2008). Many risk factors remain unclear in the onset 
of oncogenesis. Recent research indicates that the immune 
system plays a role in both the development of and host 
defence against brain tumors (Albesiano et al. 2010; Charles 
et al. 2011). It is believed that among the molecular and im-
munological factor, also diet, environmental and personal 
exposition might play an important role in the etiopatho-
genesis of tumor development (Wrensch et al. 2002; Bondy 
et al. 2008; Curran and Bertics 2012).

Molecular biological features of selected brain tumor 
types

Cells might be deviated from normal cell cycle (prolif-
eration, differentiation, cell death) by two types of genes
– oncogenes and tumor suppressor genes. These genes spark
oncogenesis by accumulating genetic lesions. Oncogenes, 
when activated, can cause cells to escape apoptosis and thus 
further proliferate themselves. The most common forms
of genetic alteration in these genes are the amplification
of genetic material and an activating mutation. It is domi-
nant, as mutation of one allele is sufficient to express the
function of the oncogene.

On the other hand, tumor suppressor genes and their 
protein products cause inhibition of cell growth. The most
common genetic alterations in these genes are deletions (loss 
of genetic material) or inactivating (inhibitory) mutations. 
Mutant forms of tumor suppressor genes are recessive. Muta-
tions on both alleles are required to abolish its function.

Brain metastases are the most frequent tumors in 
intracranial localisation. The most frequent malignant
primary brain tumors in adults are gliomas and primary 
central nervous system (CNS) lymphomas, most frequent 
benign tumors are meningiomas and pituitary adenomas 
(Table 1), (Wrensch et al. 2002; Louis et al. 2007; CBTRUS 
2008).

Gliomas

Gliomas are the most common type of primary brain tumors 
(about 70–80%), (Louis et al. 2007; Ricard et al. 2012). Glio-
mas can originate from neural stem cells, progenitor cells 
(Persson et al. 2010), or de-differentiated mature neural cells
that transformed into cancer stem cells (Stiles and Rowitch 
2008; Ricard et al. 2012). It is suggested that gliomas may 
arise from neuroepithelial stem cells (NEPs); some gliob-
lastomas may rise from oligodendrocyte-type 2 astrocytes. 
NEP is a growth precursor for all cell types in the brain and 
spinal cord and possess the capacity for survival, self-renewal 
and uncontrolled cell division. Its growth is regulated by the 
epidermal growth factor (EGF) or fibroblast growth factor
(FGF), (Nupponen and Joensuu 2006; Kozler et al. 2007). 

Mutations of tumor suppressor genes lead to loss 
of function and overexpression of oncogenes occurring 
in oncogenesis. Various molecular abnormalities occur 
in gliomagenesis (Figure 1). The most frequently altered
genes are: TP53, MDM2, CDKN1A, CDKN1B, CDKN2A, 
CDKN2B, p14ARF, CDK4, CDK6, RB1 (the retinoblastoma 
gene) and more.

The TP53 gene is localized on 17p13.1. The product
of this gene is the tumor suppressor protein p53. TP53 is 
a critical tumor suppressor that restricts proliferation and 
cell growth following stress. This protein is known for its
ability to induce cell cycle arrest, cell reaction to DNA dam-
age, apoptosis, senescence, autophagy, cell differentiation
and neovascularisation and cell death (Vousden and Prives 
2009; Hede et al. 2011). Because of the crucial role of p53 
as a tumor suppressor, TP53 is one of the most frequently 
mutated genes in human cancer cells (Iacob and Dinca 
2009). The p53 and RB cell cycle and cell death signaling
pathway is shown on Figure 1. Adult malignant astrocy-
toma was one of the first tumors shown to have frequent
TP53 mutations (Nigro et al. 1989; Iacob and Dinca 2009). 
The dysfunction of TP53 disrupts the p14ARF pathway, 
delaying the process of apoptosis and further promoting 
genomic instability (Krakstad and Chekenya 2010). The
most common positions of alterations are codons 175, 
248 and 273 contributing substantially to the overall high 
incidence of alterations in p53’s DNA-binding domain. 
Polymorphisms in codon 72 have been associated with 
susceptibility to human cancer. A possible association has 

Table 1. Primary brain tumors in adults and their 
distribution according to histological classification
(modified from CBTRUS 2000–2004)

Histological type %

Meningioma 33.00
Glioblastoma 18.30
Tumors of cranial nerves 8.60
Pituitarytumors 8.00
Hematological neoplasms 2.80
Anaplastic astrocytoma 2.60
Astrocytoma 2.20
Oligodendroglioma 1.90
Not specified malignant glioma 1.60
Ependymoma 1.20
Neuronal/glial tumor 0.80
Pilocytic astrocytoma 0.60
Craniopharyngeoma 0.50
PNET/medulloblastoma 0.40
Germ cell tumors 0.20
Others 17.30
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been found between TP53 Arg72Pro polymorphisms and 
susceptibility to brain tumors, particularly in high-grade 
astrocytomas (Parhar et al. 2005). Another study has failed 
to confirm this observation (Zhang et al. 2012). Loss of an 
allele on chromosome 17p and mutation of TP53 occur in 
one-third of all astrocytomas, but the mutation of TP53 is 
the most important in the formation of astrocytomas grade 
II (Hede et al. 2011; Wang et al. 2011). It also plays a role 
in their progression to secondary glioblastoma (shows 
a previous history of progression from lower-grade astro-
cytoma), but on the contrary, it is relatively rare (cca 10%) 
in primary glioblastoma (Furnari et al. 2007; Ohgaki and 
Kleihues 2007) and pilocytic grade I astrocytoma (Hede et 
al. 2011). This fact helped to establish two different genetic
pathways that lead to glioblastoma formation – primary and 
secondary glioblastoma (Ohgaki and Kleihues 2007; Hede et 
al. 2011). Protein p53 was shown to be a prognostic marker 
(Levidou et al. 2010). Recently, novel functions of p53 in 

stem cells have been found, these including suppression 
of pluripotency and inhibition of stem cell self-renewal 
(Zhao and Xu 2010). 

MDM2 (murine double minute-2) is an oncogene located 
on chromosome 12q14.3-q15. The protein product of this
gene is E3 ubiquitine ligase, it negatively regulates p53 and 
suppresses cell cycle arrest or apoptosis and also promotes 
cell survival and growth (Thomasova et al. 2012). MDM2
protein suppresses p53´s transcriptional activity and tar-
gets p53 for proteasomal degradation (Wade et al. 2010). 
Amplification and overexpression of MDM2 excludes TP53 
from having an effect on the cell cycle. Amplification of this
gene is present in 10% of glioblastoma without a TP53 muta-
tion (Hede et al. 2011). Overexpression of MDM2 plays an 
important role in glioma tumorigenesis, but does not seem 
to be involved in glioma progression (Wang et al. 2011). 
MDM2 is strongly expressed in many malignancies with 
wild type p53 as an alternate mechanism to disrupt the p53 
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Figure 1. The tumor suppressor 
protein p53 and RB cell cycle and cell 
death signaling pathway. Alterations 
in this pathway cause inability of 
cells to undergo apoptosis and they 
proliferate. Proteins marked with full 
colour are most frequently altered 
in astrocytomas. MDM2, mdm2 
TP53 binding protein homologue; RB, 
retinoblastoma.
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pathway in early cancer development (Eischen and Lozano 
2009; Hede et al. 2011).

CDKN1A gene is located on chromosome 6p. The product
of this gene is protein p21 whose transcription is regulated 
by the level of protein p53. Protein p21 is a member of the 
kinase inhibitor protein (KIP) family. It has a negative effect
on the function of cyclin E/CDK2 (cyclin dependent kinase) 
and cyclin A/CDK2 complexes and activates cyclin D/CDK 
complexes. This protein has a huge effect on controlling cell
proliferation by regulating binding to different CDK com-
plexes (He et al. 2006). All exogenous effects that cause TP53 
mediated cell cycle arrest or apoptosis induce transcription 
of protein p21. Amplification of this gene is frequent in all 
glial tumors (Walker et al. 2011).

CDKN1B gene is localized on chromosome 12p13.1-p12. 
The product of this gene is protein p27. This protein is also
a member of the KIP family and has opposite effects on
the function of different CDK complexes. It inhibits the
function of cyclin E/CDK2 and cyclin A/CDK2 complexes 
and it seems to activate cyclin D/CDK complexes (He et 
al. 2006). Frequent binding of p27 to cyclin D/CDK com-
plexes was found in proliferating cells. On the other hand, 
in G1-arrested cells p27 was found in complexes with cyclin 
E/CDK2. The crucial role for cell cycle progression seems
to depend on the competition for binding of p27 between 
cyclin D/CDKs and cyclin E/CDK2 complexes. High expres-
sion of p27 is present in diffuse astrocytoma (grade II), low
expression is seen in malignant gliomas and some carcino-
mas, and very low expression in anaplastic astrocytomas 
and glioblastoma (Yue et al. 2012).

CDKN2A and CDKN2B genes are located on chromo-
some 9p21. Their products are proteins p16 and p15 acting
as inhibitors of CDK (mainly CDK4 and CDK6), (Liu et al. 
2010). Proteins p16 and p15 inhibit the phosphorylation 
of RB1 protein by binding to cyclin D and thus preventing its 
interaction with CDK4 and CDK6. Mutations of these genes 
are connected with a higher risk of glioma development 
(Shete et al 2009; Wrensch et al 2009). Homozygous deletion 
in CDKN2A, results in suppression of RB1 protein function 
via elevated CDK4/6 activity, and is detectable in almost 50% 
of gliomas and also the loss of expression has been linked 
to poor prognosis (Simon et al. 2006, 2010; Goldhoff et al.
2012). Polymorphisms in CDKN2A/CDKN2B genes are not 
connected with tumor grade and prognosis (Simon et al. 
2010). Regulation of p16/ p14ARF is important for sensitivity 
to ionizing radiation, the only environmental factor strongly 
connected with gliomagenesis (Liu et al. 2010). 

Gene p14ARF is also located on locus 9p21. Its product 
protein p14ARF inhibits degradation of p53 mediated 
by MDM2. Upregulation of p14ARF increases p53 level 
which in turn increases the sensitivity of p53 pathway and 
induces cell cycle arrest and apoptosis (Liu et al. 2010). 
Germline mutations of p14ARF have been reported to cause 

melanoma-astrocytoma syndrome (Randerson-Moor et 
al. 2001).

Both CDK4 gene (localized on chromosome 12q14) and 
CDK6 gene (7q21-22) products CDK4, CDK6 proteins have 
a catalytic kinase activity. They produce complexes with cy-
clin D and are inhibited by proteins p15 and p16. CDK6, an 
oncogene, is required for proliferation and viability of tumor 
tissue (Wiedemeyer et al. 2010). Overexpression of all CDK 
proteins can inhibit function of p15 and p16 (inhibitors 
of CDK), (Malumbres and Barbacid 2009). Amplification
of CDK4 and CDK6 is present in 15% of high-grade gliomas 
(Wiedemeyer et al. 2010).

The retinoblastoma gene (RB1) is located on chromo-
some 13q14.2. Its product is the RB1 protein which is 
the final point of kinase activities of CDK4/CDK6-cyclin
D complexes. RB protein controls entry into the cell cy-
cle, it acts as gatekeeper to S-phase entry. This protein is
normally not phosphorylated and it is associated with the 
transcription factor E2F. RB with E2F acts as a silencing 
complex and restricts access to transcription factors. 
Phosphorylation of RB1 protein leads to the release 
of transcription factor E2F. Such altered conformation 
allows access to cdk2 during S-phase which produces 
additional phosphorylation and further inhibiting E2F 
binding (Goldhoff et al. 2012). This disruption of RB/E2F
allows transcription of crucial genes required for cell cycle 
entry. Aberrations of RB pathway are common in glioblas-
toma and play a critical role in gliomagenesis and tumor 
progression for lower-grade astrocytomas (Chow et al. 
2011). These alterations are present in 80% of all primary
glioblastoma (The cancer genome atlas 2008). Alteration
of this gene is present in one-third of high-grade astrocy-
tomas. Mutated RB1 has the same effect as the amplifica-
tion of CDK4/CDK6 or mutation of CDKN2A/CDKN2B, 
nevertheless these genetic alterations are never present 
together. This information demonstrates that oncogenesis
of grade III and grade IV astrocytomas proceeds by only 
one of these alternative genetic pathways. Alterations in 
RB1 expression have been associated with increased tumor 
proliferation and decreased survival (Kim et al. 2011). 
RB1 may have a more direct correlation with prognosis 
in lower-grade (II, III) astrocytomas than in glioblastoma 
(Kim et al. 2011). The RB pathway is nearly universally
inactivated in human cancers, including glioblastoma 
(Wiedemeyer et al. 2010).

Deleted in colorectal cancer gene (DCC) is located on 
chromosome 18q21.3 and its product is the DCC protein. 
This transmembranous protein is expressed in high quanti-
ties in the nervous system. Products of this gene create part 
of the receptor for netrin 1. Netrins play important roles in 
direct cell and axon migration during neural development 
(Rajasekharan and Kennedy 2009). These proteins are also
expressed in adult tissues, although their function is not yet 
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known. DCC induce apoptosis and cell cycle arrest in G2 
point and it is also required for chemoattraction to netrin-1 
slowing the rate of spontaneous cell migration (Jarjour et al. 
2011). An anti-oncogenic function had been suggested for 
DCC, although netrin signaling disruption contributing to 
tumorigenesis is still poorly understood (Jarjour et al. 2011). 
Immunohistochemical examinations demonstrate that the 
expression of DCC decreases in many malignancies, includ-
ing the most high-grade gliomas and also during progression 
from low-grade astrocytomas to glioblastoma. This shows
that DCC is connected with the formation of secondary 
glioblastoma, but not with the formation of primary gliob-
lastoma (Kozler et al. 2007; Jarjour et al. 2011).

Phosphatase and tensin homology PTEN (also called 
MMAC1, TEP-1) is a tumor suppressor gene on chromo-
some 10q23.3. The product of this gene is a lipid phos-
phatase that counteracts the effect of PI3K signaling, thereby
negatively controlling the activation of this pathway (Figure 
2). This gene is mutationally or transcriptionally inactivated
in many tumor types, including astrocytomas (Bleeker et 
al. 2009). Germinal PTEN mutations were seen in some 
autosomal hereditary diseases, such as Cowden disease, 
Bannayan-Zonana syndrome, etc. Monosomy of chro-
mosome 10 is frequently seen in glioblastoma, but rarely 
in low-grade astrocytoma. Loss of function of this tumor 
supressor gene is present in both, primary and secondary 
glioblastoma (Hede et al. 2011). PTEN is mutated or lost 
in 60–70% of high-grade glioma (Dey et al. 2008) and is 
associated with poor prognosis (Walker et al. 2011). After
the exposure to ionizing radiation, PTEN acts as a critical 
determinant of cell fate between senescence and apoptosis 
(Lee et al. 2011). 

Paternally expressed gene 3 (PEG3) is located on 
19.chromosome. PEG3 is an imprinted gene that is expressed 
mainly during embryogenesis and in adult ovary, testis, 
muscle and brain (Jiang et al. 2010). The low gene expres-
sion was confirmed in glioblastoma and its high expression
was observed in oligodendrogliomas. Results show that 
abnormal regulation of PEG3 induces formation of some 
gliomas and also plays an important role in tumorigenesis 
(Otsuka et al. 2009). 

Growth factors also play an important role in oncogen-
esis as mutations of these factors are frequently present in 
gliomas.

Epidermal growth factor (EGF) gene is located on chro-
mosome 4q25. EGF binds to EGFR inducing a dimerisation 
of one or several members of the EGFR family (ErbB 1-4), 
activating several thyrosine kinases and other downstream 
signal molecules promoting transcription in the cell nucleus 
(Sjöström et al. 2010). In a small study including only 42 
patients, poor survival of glioblastoma patients with func-
tional polymorphism 61 A/G located in the EGF promoter 
was observed (Bhowmick et al. 2004). But 2 other studies 

with a bigger group of patients failed to replicate the initial 
observation (Costa et al. 2007; Vauleon et al. 2007). 

Epidermal growth factor receptor (EGFR) gene is located 
on chromosome 7p12. EGFR is a transmembranous recep-
tor responsible for communication with its extracellular 
ligands (EGF and TGF-α (transforming growth factor α)) 
and for transmission of their signalisation within the cell. 
EGFR is the most frequently amplified gene in astrocytomas
(approximately one-third of glioblastoma cases, less seen 
in anaplastic astrocytomas). EGFR is closely connected with 
tumor proliferation, metastasis, apoptosis, angiogenesis, 
and sensitivity to therapy and drug resistance (De Luca et 
al. 2008). Mutations in the EGFR gene are associated with 
early relapses and poor prognosis (Hu et al. 2013). Expression 
of EGFR is higher in high-grade and poorly-differentiated
gliomas and together with amplification of EGFR is cor-
related with tumor progression (Hoelzinger et al. 2005; De 
Luca et al. 2008; Hofer and Lassman 2010; Hu et al. 2013). 
More than 50% of glioblastomas have a mutation of EGFR 
which can exist in 3 variations: EGFRvIII, δEGFR and de2-
7EGFR (deletion, loss of exons 2-7 of mRNA strand). The
δEGFR promotes tumorigenesis of glioblastoma cells in 
vivo by increasing cellular proliferation (Narita et al. 2002), 
decreasing cellular apoptosis (Puputti et al. 2006) and 
promoting tumor cell invasion (Lal et al. 2002). Amplifica-
tion and specific mutation of EGFR (de2-7EGFR) is typical 
for primary glioblastoma. Primary glioblastoma with this 
mutation simultaneously have monosomy of chromosome 
10. Amplification in glioblastoma is present also without
homozygote deletion or mutation of PTEN (simultaneously 
present in 20% of primary glioblastoma), but in most cases 
it is associated with CDKN2A deletion (Kozler et al. 2007). 
It has been suggested that alteration of EGFR alone is not 
enough to cause tumorigenesis but another alteration in 
protein RB1 pathway is necessary to cause tumor formation 
(Figure 2).

Platelet-derivated growth factor (PDGF) exists as five
types of dimers consisting of 4 types of polypeptides, each 
encoded by a different gene – A, B, C and D. PDGFA (gene
PDGFA, localized on 7p22), PDGFB (gene PDGFB, local-
ized on 22q13.1), PDGFC (gene PDGFC, localized on 4q32), 
and PDGFD (gene PDGFD, localized on 8q11). There are
only 2 receptors: PDGFR-α (gene PDGFRA on chromosome 
4q11-q13) and PDGFR-β (gene PDGFRB on chromosome 
5q31-q32). Overexpression of PDGF and PDGFR are fre-
quently present in astrocytoma (mainly glioblastoma) and 
medulloblastoma, but amplification is rare (Furnari et al.
2007). Deletion of 17p is often connected with PDGFR-α
overexpression (Kozler et al. 2007). PDGFR pathway aber-
rations are mainly associated with secondary glioblastoma 
(Puputti et al. 2006) (Figure 2).

Insulin-like growth factor (IGF) plays a role in the regu-
lation of tumor cell biology. The IGF system is comprised
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of two ligands: IGF1 (gene located on 12q23.2) and IGF2 
(somatomedin A, located on 11p15.5) and its receptors: 
IGF1R (gene located on 15q26.3) and IGF2R (6q26), six 
binding proteins (IGFBP 1-6) and various IGFBP-related 
peptides. IGF1 is a major physiological mediator of growth 
hormone and has a strong influence on cell proliferation
and differentiation. It also inhibits apoptosis by blocking
the initiation of the apoptotic pathway. Its receptor IGF1R 
is involved in malignant transformation processes. IGFBPs 
modulate interactions between IGF and IGFR. IGFBP3 (lo-
cated 7p13-p12) which acts as an apoptotic agent, inhibits 
IGF1 activity and has growth promoting effects (Lön et al.
2008). IGF1, IGF2 and IGF1R genes have been reported to 
be amplified in glioma as well as in other cancers (Fursten-
berger and Senn 2002; Renehan et al. 2004; Russo et al. 2005). 
Polymorphism of IGF1R indicates a possible association 
with glioma risk (low-grade). No connection between IGF 
polymorphisms and glioblastoma risk has been found (Lön 
et al. 2008).

Regarding other growth factors and their receptors, 
astrocytoma genesis is also associated with the overexpres-
sion of FGF, (aFGF – chromosome 5q31.3-q33.2, bFGF 
– chromosome 4q27-q25) and vascular endothelial growth 
factor – VEGF (receptor 1 – chromosome 13q12, receptor 4 
– chromosome 5q33-qter). Level of expression of VEGF is 
directly correlated with the occurrence of bleeding into the 
tumor. Although EGFR and VEGFR are heavily activated in 
glioblastoma, agents targeting these showed disappointing 
results in clinical trials (Brown et al. 2008; Norden et al. 
2008). 

From other types of genes connected with gliomagenesis, 
the most frequently observed alterations are: glutathione 

S-transferases genes, isocitrate dehydrogenases genes and 
epigenetic changes of methylguanin O-methyltransferase 
gene.

Glutathion S-transferases (GST) genes: GSTP1 (loca-
tion 11q13), GSTM1 (1p13.3), GSTT1 (22q11.23), GSTO1 
(10q25.1). GSTs are phase II biotransformation enzymes that 
function on the detoxification of a wide range of exogenous
agents including carcinogens. They are responsible for glu-
tathion conjugation of alkylators and scavenging of free radi-
cals generated by radiation (Kilburn et al. 2010). GSTs provide 
enzymatic and non-enzymatic functions and are involved in 
many important cellular processes, such as: stress response, 
cell proliferation, apoptosis, oncogenesis, tumor progres-
sion and drug resistance (Lo and Ali-Osman 2007). Genetic 
variations in these genes are important in determining the 
response to carcinogenes. GST polymorphisms may result in 
altered or absent enzyme activity and have been associated 
with survival rate in cancer patients. Results of recent stud-
ies suggested a relationship between brain tumor incidence 
with GSTM1 null genotype but not with GSTT1 or GSTP1 
gene variants (Pinarbasi et al. 2005). Other studies observed 
no association between GST and the related enzyme poly-
morphisms and adult brain tumor risk (Schwartzbaum et al. 
2007). Another study has shown a longer survival in patients 
with GSTP1 and GSTM1 polymorphisms in patients with 
grade III gliomas. These patients also had an increased risk
of adverse events resulting from chemotherapy that primarily 
comprised nitrosourea alkylating agents (Okcu et al. 2004). 
GSTs also determine drug resistance and response of cancer 
patients to therapy (Lo and Ali-Osman 2007).

Isocitrate dehydrogenase genes IDH1 (located 2q33.3) and 
IDH2 (located 15q26.1). IDHs (IDH1, IDH2 and IDH3) are 
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Figure 2. Frequent genetic alteration 
in RTK/RAS/PI(3)K pathway. Most 
frequently altered genes are PTEN, 
NF1 and EGFR genes. AKT, protein 
kinase B; EGFR, epidermal growth 
factor receptor; ERBB2, receptor ty-
rosine-protein kinase erbB-2; FOXO, 
forkhead box proteins; MET, hepa-
tocyte growth factor receptor; NF1, 
neurofibromatosis type 1; PDGFRα,
platelet-derivated growth factor 
receptor α; PI3K, phosphoinositol 3 
kinase; PTEN, phosphatase and tensin 
homology; RAS, protein superfamily 
of small GTPases; RTK, receptor 
tyrosine kinase;VEGFR, vascular en-
dothelial growth factor receptor.
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enzymes involved in the citric acid cycle that catalyze the 
oxidative decarboxylation of isocitrate to a α-ketoglutarate 
while reducing NADP+ to NADPH (NAD+ to NADH in the 
case of IDH3). A critical structure of IDH1 in the enzymatic 
interaction with the substrate isocitrate is the arginine 132 
(R132), an identical role played by R172 in IDH2. The muta-
tions of these genes are missense substitutions which lead 
to reduction of enzymatic activity of the encoded protein 
(Yan et al 2009; Pusch et al. 2011). Mutations of R132 result 
in a greater than 80% enzyme activity reduction compared 
with the wild type (Zhao et al. 2009). IDH genes were found 
to have mutations mainly in tumors that have evolved from 
low-grade gliomas (secondary glioblastoma), (Ichimura et 
al. 2009; Jha et al. 2011; Toedt et al. 2011), on the other hand, 
they are rare in primary glioblastoma (7%) and pediatric 
glioblastoma (11%), (Kim and Liau 2012). The IDH muta-
tions are found across different molecular and histologic
brain tumors subtypes (diffuse astrocytoma, oligodendro-
glioma, secondary glioblastoma, etc.) suggesting that there 
are early genetic alterations in tumorigenesis and they occur 
early in the development of a glioma from the stem cell that 
can give rise to both astrocytes and oligodendrocytes (Yan et 
al. 2009). Within the group of IDH1 or IDH2 mutated ana-
plastic astrocytomas and glioblastomas, 80% of this tumors 
also had mutations of TP53, but only 3% had alterations in 
PTEN, EGFR, CDKN2A or CDKN2B. On the contrary, ana-
plastic astrocytomas and glioblastomas with wild type IDH 
genes had a few TP53 mutations (18%) and more frequent 
alterations of PTEN, EGFR, CDKN2A or CDKN2B (74%), 
(Parsons et al. 2008; Ichimura et al. 2009; Yan et al. 2009). 
This fact indicates that IDH mutations occur more likely in 
secondary glioblastomas. One study identified the mutations
that affected amino acid 132 of IDH1 in more than 70% 
of WHO grade II, III astrocytomas, oligodendrogliomas and 
secondary glioblastomas (Yan et al. 2009). Tumors without 
IDH1 mutations often had mutations affecting the analogous
amino acid (R172) of the IDH2 gene. Tumors with such mu-
tations have distinctive genetic and clinical characteristics 
and these particular patients had a better outcome than those 
with wild-type IDH genes. This makes mutation of IDH1 
a novel prognostic factor in gliomas (Balss et al. 2008; Par-
son et al. 2008; Weller et al. 2009; Yan et al. 2009). On the 
other hand, a study conducted by Parson et al. found IDH1 
mutations in approximately 12% of glioblastoma (Parson 
et al. 2008). Explanation for this finding could be that the
authors did not divide primary from secondary glioblastoma 
in there study. Within the group of primary glioblastomas, 
IDH1 mutations are rare and create a prognostically favora-
ble subgroup (Weller et al. 2009).

The MGMT gene codes for a protein with alkyltransferase 
activity – O6-methylguanine-DNA methyltransferase 
(MGMT), a DNA-repair enzyme, which causes tumor resist-
ance to alkylating and methylating agents (e. g. temozolo-

mide). Activity of this enzyme is regulated by a promoter. 
Methylation of this promoter area of MGMT results in 
its inactivation. Weller et al. found MGMT promoter 
methylation in 44% of glioblastoma patients. Prolonga-
tion of progression-free survival was observed in patients 
treated with temozolomide, but not in patients receiving 
radiotherapy alone as their first-line treatment (Weller et
al. 2009). Another author states that methylation of MGMT 
promoter in tumor tissue is associated with longer survival 
regardless of the therapy method used (Hegi et al. 2005). 
MGMT promoter hypermethylation is associated with 
prolonged progression-free survival and overall survival in 
patients with glioblastoma treated with alkylating agents 
(e.g. temozolomide), (Hegi et al. 2005; Herrlinger et al. 2006; 
Glas et al. 2009). Methylation status of the MGMT promoter 
is clinically the most relevant molecular parameter (Weller 
et al. 2009) and has been used as a biomarker to predict the 
sensitivity of gliomas to DNA alkylating chemotherapeutics 
(Von Deimling et al. 2011). Expression of MGMT is not as-
sociated with tumor grade (Hu et al. 2013).

According to WHO classification of brain tumors there
are four main types of gliomas: astrocytomas, oligoden-
drogliomas, mixed oligoastrocytomas and ependymomas 
(Louis et al. 2007).

Astrocytoma

According to WHO classification (Luis et al. 2007) in order
of increasing anaplasia, types of astrocytomas usually in-
clude: pilocytic astrocytoma (grade I), diffuse astrocytoma
(grade II), anaplastic astrocytoma (grade III) and glioblas-
toma (grade IV). Low grade astrocytomas can progress to 
higher malignancy grade, leading to the formation of sec-
ondary glioblastoma, as opposed to the frequent primary 
glioblastomas (Ricard et al. 2012). High-grade astrocytomas 
are grade III and grade IV astrocytomas.

Diffuse infiltrative astrocytomas are tumors of astrocyte
origin. Except pilocytic astrocytoma which has different
behavior and is demarcated, other astrocytic tumors grow 
unbounded (Ricard et al. 2012). Astrocytomas spread along 
tracts in the white matter, then the tumor cells infiltrate
cerebrospinal fluid and vessels between duplications of the
meningeal layers. Healthy cells are unable to move in the 
white matter. Astrocytoma cells interact with the elements 
of structural proteins of the extracellular matrix to further 
promote their invasiveness. This way of spreading of tumor
cells is induced by the activation of receptors and growth 
factors – integrins and proteins – DCC (deleted in colorectal 
cancer), hyaluron receptors CD44, RHAMM (receptor for 
hyaluronan mediated motility), BEHAB (brain enriched 
hyaluronan binding ), ontogenetic protein SPARC (secreted 
protein, acidic and rich in cysteine), receptors of PDGF, 
TGF-α, EGFR and bFGF (Kim C. et al. 2011; Sciaccaluga 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sciaccaluga%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24023874
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et al. 2013; Viapiano et al. 2008). Interaction of the extra-
cellular matrix proteins with activated growth factors and 
their receptors happen as a result of genetic alteration (mu-
tation, deletion, overexpression or amplification). Border
of the tumor plays the crucial role in invasion. There is also
a localized migration by an activating protein – tenascin 
(Mustafa et al. 2012).

Formation and progression of tumor is always accompa-
nied by angiogenesis. Tumor cells in an increased prolifera-
tive state need a greater oxygen supply in order to grow (Gil-
Gil et al. 2013). Angiogenic switch is triggered by hypoxia 
and starts with the up-regulation of vascular endothelial 
growth factor – VEGF (Mustafa et al. 2012). Microvascular 
proliferation and increase of vascularity in malignant glio-
mas is caused not only by increased angiogenesis, but also by 
remodelation of vessel wall and by activation of endothelial 
precursor cells with tha capacity to form de novo blood 
vessels – vasculogenesis (Li Calzi et al. 2010). Angiogenesis 
is mediated by the release of proangiogenic factors (e.g. 
VEGF, bFGF, angiopoietins 1–4), by endothelial, stromal 
and tumor cells, by the binding of these factors to their 
corresponding thyrosine kinase receptors such as: VEGF 
receptor (VEGFR-1, VEGFR-2 and VEGF-3), Tie-1, Tie-2, 
PDGFR-β, c-met and integrins (Tchaicha et al. 2011; Mustafa 
et al. 2012; Fagiani and Christofori 2013). These receptors
are up-regulated on the surface of the tumor vessels and the 
tumor itself generates ligands for these receptors (Kozler et al. 
2007). VEGF plays the most important role for angiogenesis 
in the tumor, providing increased vascular permeability and 
lymphangiogenesis (Gil-Gil et al. 2013). It also increases 
permeability of the blood-brain barrier and participates in 
the formation of brain edema. VEGF is also produced by 
tumor cells and the amount of VEGF produced depends 
on the grade of the tumor – a higher VEGF production was 
observed in association with higher grade tumors (Saharinen 
et al. 2011). VEGF in conjunction with angiopoietin 2, pro-
motes neovascularisation. Tie-2 receptor triggers capillary 
remodelling. In case of tumor progression there is increased 
expression of this receptor by endothelial cells (Fagiani and 
Christofori 2013). Angiopoietin 4 promotes tumor angio-
genesis and glioblastoma progression (Brunckhorst et al. 
2010). Another receptor involved in capillary remodelling 
is PDGFR-β (Tchaicha et al. 2011).

Apoptosis as programmed cell death is important for 
the regulation of cell population and the balance between 
proliferation and cell growth on one side and cell death on 
the other side (Lockshin and Zakeri 2007). It plays a key role 
in central nervous system development, immune regulation, 
brain tumor development and also degenerative diseases 
(Mellai and Schiffer 2007). Resistance to apoptosis contrib-
utes to carcinogenesis and tumor progression. Since most 
of the current anticancer therapy regimes primarily act by 
activation of cell death pathways, including apoptosis, in 

cancer cells this adaptive stress response promotes the devel-
opment of acquired resistance (Fulda 2010). Temozolomide, 
frequently used in glioma chemotherapy, induces apoptosis 
and autophagy in glioma cells. Necrosis is only marginally 
induced (Knizhnik et al. 2013). The same stimulus can elicit
both, necrosis and apoptosis, depending on the intensity 
of the initial insult and on preservation or loss of energy 
production in the cell (Mellai and Schiffer 2007). The ap-
optosis pathway plays a role on proteins, such as: p53, p21, 
Bcl-2, Bax, caspases etc. Other than expected, apoptosis was 
demonstrated in gliomas, with an increasing frequency from 
low grade to glioblastoma and was related to shorter survival. 
However, apoptotis index did not predict recurrence in as-
trocytomas (Mellai and Schiffer 2007). Inability to undergo
apoptosis as a consequence of p53 inactivation might play 
a role in brain tumor development. Tumor cells escaping 
apoptosis have damaged DNA leading to an accumulation 
of mutations and, therefore, tumor progression (Krakstad 
and Chekenya 2010).

Low-grade astrocytomas often show loss of heterozy-
gozity (LOH) of 22q and gain of chromosome 7 and am-
plification of 8q (Reifenberger and Collins 2004). Cca 40%
of high-grade astrocytomas show deletion on chromosome 
19q. In 20–30% of gliomas there is a LOH on chromosome 
22q. It is suggested that some unknown tumor suppressor, 
which plays a role in the early stages of astrocytoma gen-
esis, is localized on this chromosome (Kozler et al. 2007). 
Progression from low-grade to anaplastic astrocytoma and 
formation of secondary glioblastoma is connected with 
deletions on chromosomes 6, 9p, 11p, 17p, 13q, rarely with 
an amplification of 12q (Kozler et al. 2007; Walker et al.
2011). On the other hand, LOH on 10p, 10q is common in 
primary glioblastoma (Walker et al. 2011) (Figure 3).

Oligodendroglioma

Oligodendrogliomas originate from differentiated oli-
godendrocytes (oligodendroglial cells) or in immature glial 
precursor cells. Besides glioblastoma and astrocytomas, 
oligodendrogliomas represent the third most frequently 
encountered type of glial tumors and constitute 2.5% of all 
primary brain tumors (Ohgaki 2009). According to the 
WHO grading there are two forms of oligodendrogliomas 
– oligodendroglioma (grade II) and anaplastic oligodendro-
glioma (grade III), (Engelhard et al. 2003; Louis et al. 2007). 
Unlike other brain tumors, oligodendrogliomas very rarely 
metastasize to other locations, such as lung, liver, bone and 
cervical lymph nodes (Volavsek et al. 2009). 

Genetic alterations of oligodendrogliomas are different
from astrocytomas alterations. No specific immunohisto-
chemical markers for these tumors exist. The most common
genetic alteration in this type of tumor is a deletion at chro-
mosomal loci 1p and 19q. LOH of 19q is found in 50–80% 
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of oligodendrogliomas, LOH of 1p in cca 70% (Van den Bent 
2004). Tumors with LOH on 1p also have LOH on 19q, what 
exert to their synergetic effect. A combined loss of 1p and 19q
identifies a group of good tumor prognosis (Giannini et al.
2008; Velnar et al. 2009). Moreover, other studies showed more 
favourable survival in patients with tumors with combined loss 
of 1p and 19q also when treated with radiotherapy only (Van 
den Bent et al. 2006; Cairncross et al. 2006; Kouwenhoven 
et al. 2009). Pediatric oligodendrogioma only rarely exhibit 
chromosomal abnormalities (Stupp and Hegi 2007). 

Only a small amount of tumors have mutations or dele-
tions in the CDKN2C gene on 1p32. The TP53 mutation is 
present only in 10–15% of these tumors. This mutation oc-
curs in tumors without 1p and 19q loss. These tumors are his-
tologically anaplastic or mixed oligoastrocytomas and they 
express poor chemosensitivity (Ducray et al. 2008). Patients 
with TP53 mutations (and intact 1p 19q chromosomes) have 
only 33% efficacy rate with chemotherapy treatment. On the
other hand, 100% response rate was observed in patients with 
1p 19q codeletion and intact TP53 (Mueller et al. 2002).

Tumor cells are under influence of growth factors and
the expression of their receptors. The most important re-
ceptors are EGFR and PDGF/PDGFR (Riemenschneider 
et al. 2004). VEGF and its receptors play an important role 
in angiogenesis. Overexpression of EGFR was observed in 
50% of oligodendrogliomas, overexpression of other growth 
factors is less frequent (Stupp and Hegi 2007).

Anaplastic oligodendrogliomas may evolve from a low-
grade oligodendroglioma, becoming more anaplastic over 

time, or present de novo. They have the same genetic altera-
tions as grade II (deletion on 1p and 19q) and also deletions 
on chromosomes 9 and 10, which accompany malignant 
progression also in other astrocytic tumors (Stupp and Hegi 
2007). In 25% of cases of anaplastic oligodendrogliomas, 
a homozygous deletion on CDKN2A has been observed. 
Mutation of PTEN (frequently present in astrocytomas) 
is very rare. Multiple deletions are seen also on other 
chromosomes, for example 4, 6, 11, 15 and 18. Anaplastic 
oligodendrogliomas with deletion on chromosomes 10 
and 9 and with amplification on chromosome 7 usually do
not have typical deletions on 1p and 19q (Stupp and Hegi 
2007). An average amount of chromosomes with lesions 
are higher in grade III then in grade II and this confirms
the hypothesis that malignant transformation is connected 
with growing amount of genetic alterations (Mueller et al. 
2002; Kozler et al. 2007).

Oligoastrocytomas, although classified separately, are
heterogenous tumors with molecular features similar to 
oligodendrogliomas or astrocytomas. Some oligoastrocy-
tomas show LOH on 1p and LOH on 19q - thus genetically 
resembling oligodendrogliomas, whereas 30% show muta-
tions in the TP53 gene or LOH on 17p suggesting a relation 
to astrocytomas. Significantly, LOH on 1p and LOH on 19q
are inversely associated with TP53 mutation (Mueller et al. 
2002). Amplification of EGFR is more frequent in oligoastro-
cytomas than in oligodendrogliomas. Tumors with this 
amplification have overal survival similar to patients with
glioblastoma (Kouwenhoven et al. 2009) (Figure 4).

Figure 3. Gene and genomic re-
gions involved in the biology of 
astrocytomas and primary and sec-
ondary glioblastoma. CDK4, cyclin 
dependent kinase 4; CDKN2A/B, 
cyclin dependent kinase inhibitor 
2A/B; EGFR, epidermal growth 
factor receptor; IDH, isocitrate de-
hydrogenase; MDM2, mdm2 TP53 
binding protein homologue; MGMT, 
O6-methylguanin DNA methyl-
transferase; meth, methylation; NF1, 
neurofibromin 1; PDGFR α, platelet
derived growth factor receptor α; 
PI3K, pphosphoinositide 3 kinase; 
PTEN, phosphatase and tensin 
homologue; RB, retinoblastoma; 
TP53, tumor suppresor protein 53; 
* gain of function through amplifi-
cation or mutation; ǂ homozygous 
deletion or mutation.
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Ependymoma

Ependymoma is the third most common pediatric brain 
tumor (Kilday et al. 2009). Ependymomas grow from 
ependymal cells which cover the internal layer of cerebro-
spinal fluid pathways (Yao et al. 2011). Most of the ependy-
momas in children occur intracranially, whereas adult 
cases predominantly occur within the spinal cord (Kilday 
et al. 2009). There are four known forms of ependymoma:
subependymoma (grade I), myxopapillary ependymoma, 
ependymoma (grade II) and anaplastic ependymoma (grade 
III) (Kozler et al. 2007; Louis et al. 2007). 

Immunohistochemical diagnosis relies on immunoreac-
tivity to glial fibrillary acidic protein (GFAP), protein S-100
and to vimentin. 

The only known hereditary form of ependymoma is part
of neurofibromatosis type 2 (NF2). The NF2 gene is located 
on 22q, which is often lost in ependymomas in spinal lo-
calization. However, most of these tumors in intracranial 
localization do not have alterations of this chromosome 
(Buccoliero et al. 2010). There have also been reported
cases of ependymoma in patients with Li-Fraumeni syn-
drome, Turcot syndrome (Mullins et al. 1998) and multiple 
endocrine neoplasia type 1 syndrome (Al-Salameh et al. 
2010). Furthermore, there are a few families with increased 
ependymoma incidence without any currently known famil-
ial cancer syndromes (Dimopoulos et al. 2006). 

The most frequently observed chromosomal anomalies in
pediatric ependymomas include loss of chromosomes 1p, 2, 
3, 6/6q, 9p, 13q, 17, and 22, as well as gains of 1q, 5, 7, 8, 9, 

11, 18, and 20 (Kilday et al. 2009). In 50% of ependymoma 
cases a deletion is present on chromosome 17 (Kozler et al. 
2007). In adult ependymomas, chromosomes 6, 10, 13q, 14q, 
16, and 22/22q are frequently lost whereas chromosomes 2, 5, 
7, 9, 12, 18, and X are gained, with gains of 7 and 9 and loss 
of 22q being the most frequently observed, though with each 
occurring in only 30% of cases or less (Kilday et al. 2009). 

The most frequently observed aberration in pediatric
intracranial ependymomas is the gain of chromosome 1q 
(over 20%). According to the literature, this genetic aberra-
tion is preferentially associated with tumors in the posterior 
fossa location and with anaplastic histological features. It is 
also a significant predictor of tumor aggressiveness and poor
patient outcome (Kilday et al. 2009; Yao et al. 2011).

Homozygous deletion at CDKN2A locus is characteristic 
for anaplastic supratentorial tumors (Korshunov et al. 2010). 
This deletion is (together with young age at diagnosis and
gain of 1q) one of the most reliable indicators of unfavorable 
outcome. In contrast, gains of chromosomes 9, 15q, and 18 and 
loss of chromosome 6 are features indicating excellent chance 
of survival. Deletion of CDKN2A occurrs in >90% of supraten-
torial ependymomas but is rare in tumors from other parts 
of the CNS (Korshunov et al. 2010; Yao et al. 2011).

Meningioma

Meningiomas are thought to be formed from arachnoidal 
cap cells in the meningeal coverings (Louis et al. 2007). They
are mostly benign, slowly growing tumors which represent 
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up to 34% of primary brain tumors (CBTRUS 2008). Ac-
cording to WHO grading, there are 3 types of meningiomas: 
meningioma (grade I), atypical meningioma (grade II) 
and anaplastic meningioma (grade III), (Louis et al. 2007). 
Another classification is made according to their localiza-
tion and histopathological features. Despite mostly being 
of histologically benign character they often invade brain
tissue which explains a high amount of tumor recurrence. 
Risk factor for meningioma recurrence include histopatho-
logical malignancy grade, subtotal resection, young age, 
specific subtypes, brain infiltration and high proliferative
rate (Torp et al. 2005; Backer-Grøndahl et al. 2012). Tumors 
with higher Ki-67 (proliferation index) and proliferating cell 
nuclear antigen (PCNA) are more likely to invade brain tissue 
independent of grade of the tumor. Recurrence rate after 5-
years is 5% in grade I, 40% in grade II and 80% in grade III 
meningioma (Riemenschneider et al. 2006). Anaplastic 
(malignant) meningioma rarely metastases extracranialy 
(to lungs, liver and bones), it’s just in 0.17% of cases (Choy 
et al. 2011).

Immunoreactivity for epithelial membranous antigen 
(EMA) – lower in atypical and anaplastic forms, for vimen-
tin, for carcinoembryonic antigene (CEA) and for cytokera-
tin (both in secretory meningiomas) was observed in most 
of the meningiomas (Perry et al. 2004).

The most common genetic abnormality found in these
tumors is monosomy 22. About 50% of all meningiomas 
have loss of allele on 22q, a region encoding the NF2 
gene. Gene NF2 plays an important role in pathogenesis 
of autosomal dominant neurofibromatosis type 2, in which
meningiomas, schwannomas and other nervous system 
tumors are often present (Choy et al. 2011). Nearly all NF2-
associated tumors and 54–78% of sporadic meningiomas 
have deletions in this region (Ragel and Jensen 2005).

DAL-1 gene (differentially expressed in adenocarcinoma
of the lung 1) is located at 18p11.3 and encodes protein 
4.1B – a regulator of proliferation and apoptosis (Choy et 
al. 2011). This protein has been implicated as a potential
tumor suppressor in meningiomas (Gerber et al. 2006). LOH 
of 4.1B/DAL-1 was reported in 60% of sporadic meningi-
omas (Gutmann et al. 2001), however, other studies showed 
a lower frequency (Nunes et al. 2005).

Telomerase is a reverse transcriptase that rebuilds the lost 
telomere repeat sequences and thus elongates chromosomes. 
Its activity is regulated during the development and growth 
of the human body (is found in fetal tissues, adult germ 
cells) and has a very low, almost undetectable activity in 
adult somatic cells (Choy et al. 2011). This enzyme is often
reactivated in malignancies to sustain chromosomal integrity 
during aggressive growth. Its activity in grade I meningiomas 
is low (3–21%). However, 58–92% of atypical and 100% 
of anaplastic meningiomas demonstrate telomerase activity 
(Laurendeau et al. 2010). Telomerase activity is associated 

with higher recurrence rate and greater malignancy in men-
ingiomas, and it may serve as a potential prognostic marker 
(Laurendeau et al. 2010; Choy et al. 2011).

Atypical and anaplastic tumors generally display more 
complex karyotypes associated with aggressive behavior 
(Yew et al. 2013). Atypical forms of meningioma have often
deletions on chromosomes: 1p, 6q, 9q, 10q, 14q, 17p and 18q. 
The same alteration plus deletion on chromosomes 6q, 9p,
10 and 14q are present in anaplastic forms. Deletions of 1p 
are the second most common chromosomal aberrations in 
higher grade meningiomas. It is also identified with a higher
recurrence rate. Gene amplifications were identified in atypi-
cal and anaplastic meningiomas on chromosomes 1q, 9q, 
12q, 15q, 17q and 20q (Liu et al. 2005; Riemenschneider et 
al. 2006; Marwin and Perry 2010; Yew et al. 2013). Malignant 
progression is associated with a stepwise cumulative acquisi-
tion of chromosomal gains and losses (Choy et al. 2011; Yew 
et al. 2013). Increased CpG island hypermethylation, as an 
epigenetic alteration, has also been associated with malignant 
meningioma progression (Liu et al. 2005).

Various growth factors have been investigated in menin-
giomas. PDGF and its receptor PDGFR-β are overexpressed 
in these tumors. Meningiomas also show overexpression 
of EGFR, which is not detectable in normal human menin-
geal tissue. EGFR ligands – TGF-α and EGF also contribute 
to the activation of EGFR (Perry et al. 2004; Choy et al. 2011). 
Increased expression of TGF-α is associated with more ag-
gressive tumor growth. Meningiomas also express TGF-β 
and its receptors (Wen et al. 2010).

VEGF and endotelin 1 (ET-1) play an important role 
in angiogenesis of meningiomas. VEGF-A and VEGFR-1 
receptor have function in tumor neovascularisation and 
peritumoral edema. VEGF express 84% and VEGFR 67% 
of meningiomas (Ragel and Jensen 2010). It has been already 
proven that after total resection the secretion of VEGF-A
from microscopic residues of tumor can cause neovascu-
larisation and tumor recurrence (Yamasaki et al. 2000). 
Increased EGF and PDGF can induce VEGF expression 
(Ragel and Jensen 2010).

Medulloblastoma 

Medulloblastoma is a malignant embryonic tumor with 
invasive growth. It appears in the cerebellum and is most 
often seen in children. It accounts for about 20% of all CNS
tumors in children (Dhall 2009). At the time of diagnosis 
one-third of the patients have already present metastases in 
cerebrospinal fluid pathways.

The crucial factors for diagnosis of medulloblastoma
are the immunohistochemical evidence of synaptophysin 
(marker of neuronal differentiation, not present in gliomas
and mesenchymal tumors), intermediate filament proteins
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(IFP), mainly nestrin, vimentin and GFAP, neuron-specific
IFP, retinal S-antigen, rhodopsin, NCAM (neural cell adhe-
sion molecule – reflects the degree of differentiation), NGF
(nerve growth factor) and its receptors Trk A, B and C (Takei 
et al. 2007). High values of proliferation index Ki-67 (over 
20%) are connected with a worse prognosis (Meurer et al. 
2008). Expression of survivin correlates with poor clinical 
outcome and might be a predictive factor for the recurrence 
or presence of metastasis (Abdel-Aziz et al. 2013).

Gene-based research has already identified most common
pathways connected with medulloblastoma: sonic hedgehog 
pathway (SHH), Wingless pathway (WNT) and NOTCH 
pathway (Northcott et al. 2011; Parsons et al 2011). Tight 
regulation of these cascades is essential for normal brain 
development. On the other hand, its dysregulation may 
cause tumorigenesis (Li et al. 2013). Recently, 4 molecular 
subgroups of medulloblastomas have been identified: SHH,
WNT, Group 3 and Group 4 (Robinson et al. 2012; Taylor 
et al. 2012; Li et al. 2013). Each of these subgroups has dis-
tinct molecular profiling and genomic defects, histological
type, progenitors, clinical parameters, and patient outcomes 
(Gibson et al. 2010; Robinson et al. 2012).

SHH subgroup comprises about 25–30% of medullob-
lastomas with the high frequency of desmoplastic histology 
(Robinson et al. 2012; Li et al. 2013). The majority of SHH
are found in infants under 3 years of age or in adults upwards 
of 16 years. Prognosis is good in infants and intermediate in 
adults. Regulators and target genes of SHH pathway (patched 
– PTCH, smoothened – SMO, suppressor of fused gene 
– SUFU, MYC, CCND1,CCND2 genes) are overexpressed in 
the SHH subgroup. The most frequent chromosomal abnor-
mality in SHH is the loss of 9q (21–47%), (Northcott et al. 
2011; Pugh et al. 2012), followed by gain of 3q and 9p and 
loss of 10q, 20p and 21p (Northcott et al. 2012). Some tumors 
within this subgroup harbor amplifications and loss of genes
associated also with p53 and PI3K pathway (Northcott et al. 
2012; Li et al. 2013). These tumors also contain MLL2 (mixed 
lineage leukemia gene 2), MLL3, TP53 and PTEN mutations 
(Parsons et al. 2011).

WNT subgroup (10–15% of all meduloblastomas) is 
characterized by classic histology (Kool et al. 2012), age 
above 3 years, good prognosis and infrequent metastasis (Li 
et al. 2013). Genetic analyses have shown the enrichment 
of genes of WNT signaling pathway (adenomatous polypo-
sis coli – APC, CTNN1, AXIN1, MYC, JUN, FRA, AXIN2, 
SMARCA4, CREBBP, MED13, CCND1 genes), CTNNB1 
mutation, DDX3X mutations and loss of chromosome 6 
(Kool et al. 2012; Northcott et al. 2012; Pugh et al. 2012; 
Robinson et al. 2012; Min et al. 2013). Loss of chromosome 
6 is associated with 88% of WNT tumors (Schwalbe et al. 
2011).

Subgroup 3 and 4 display mostly classical histology, 
occur mostly in children and have poor (group 3) and 

intermediate (group 4) prognosis (Northcott et al. 2011; 
Li et al. 2013). Both subgroups have higher expression 
of genes involved in photoreceptor differentiation, high
level of medulloblastoma oncogenes OTX2 and FOXG1B 
(Northcott et al. 2011; Robinson et al. 2012). Subgroup 3 
shows alterations of genes involved in cell cycle, protein 
biosynthesis, glutamate receptor signaling and p38 mitogen-
activated protein kinase (MMAPK) pathway, subgroup 4 has 
most often alterations of genes of neuronal differentiation
and development, cytoskeleton organization and biogenesis 
and vesicle mediated transport (Northcott et al. 2011; Li et 
al. 2013). The most common structural abnormality is iso-
chromosome 17q (I17q). I17q has breakpoint in proximal 
part of 17p resulting in dicentric chromosome with deletion 
on 17p. Higher incidence of I17q was observed in subgroup 
4 (Northcott et al. 2011; Min et al. 2013). Other aberrations 
include gain of 7 and 18q and loss of 8 and 11p. MYC and 
MYCN amplification, common in subgroup 3 (15%), is very
rarely observed in subgroup 4 (Kool et al. 2012; Robinson et 
al. 2012; Li et al. 2013).

Abnormalities of chromosome 1 (for example trisomy 
of 1q), loss of 10q, 11, trisomy of chromosome 7 are other 
possible genetic alterations. Hypermethylation of HIC1 pro-
motor was found in 80% of medulloblastoma cases (Waha 
et al. 2003). 

Malignant lymphoma

Primary central nervous system lymphoma (PCNSL) is 
an uncommon extranodal non-Hodgkin lymphoma that 
accounts for 2.7% of all malignant brain tumors. It needs 
to be distinguished from secondary lymphomas that 
primarily grow in other localizations than in the central 
nervous system. Incidence of primary brain lymphoma has 
dramatically arisen in the last 3 decades. Known risk factors 
for development of PCNSL are AIDS (acquired immune 
deficiency syndrome), iatrogenic immune suppression
for transplant procedures, congenital immune deficiency
syndromes (e. g. ataxia-teleangiectasia, Wiskott-Aldrich 
syndrome) and autoimmune conditions (e. g. rheumatoid 
arthritis, systemic lupus erythematosus, myasthenia gravis 
etc.), (Bhagavathi and Wilson 2008). 

Primary brain lymphomas are mostly composed of dif-
fuse large B-cells (T-cell lymphomas and primary Hodgkin 
lymphomas are extremely rare) and in general have poorer 
prognosis than metastatic lymphomas. The immunohisto-
chemical analyses show expression of CD45, CD20 (β-cell 
marker found in large atypical cells), CD10, CD79a and 
CD3 (T-cell marker found in small benign admixed cells) 
markers, GFAP positivity, most of PCNSL also monoclonal 
superficial and cytoplasmic immunoglobulins (most often
the combination IgM/κ). Most of these tumors are BCL2 
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(B-cell lymphoma), BCL6 and MUM-1 positive (Camill-
eri-Broet et al. 2005; Lin et al. 2006). Interleukin-4 and 
STAT6 (signal transducer and activator of transcription) are 
involved in the pathogenesis of PCNSL; STAT6 is associated 
with tumor progression and a shortened survival (Ruben-
stein et al. 2006). Deletions are very often found on 6q (cca
50%), 6p, 17p and 18p, amplifications on chromosome 1q,
7q, 12 and 18q. Translocations have been also found (1;14, 
6;14, 13;18 and 14;21). Homozygous deletion and promoter 
hypermethylation of CDKN2A is frequent (Bhagavathi and 
Wilson 2008), mutations of TP53 are extremely rare (Ru-
benstein et al. 2006).

Some cytokines and chemokines act as growth factors for 
tumor cells, inhibitors of apoptosis, attractors of immune 
cells, facilitators of invasion, promoters of angiogenesis 
and tumor-stromal cells interactions mediators (Sasayama 
et al. 2012). 

Interleukin-10 (IL-10), produced by Th2-cells, monocytes
and macrophages is known as growth and differentiation
factor for B-cells and induces higher secretion of immu-
noglobulins (Mosser and Zhang 2008). IL-10 increases 
BCL2 expression and protects malignant cells for apoptosis. 
Elevated level of IL-10 in cerebro-spinal fluid is highly associ-
ated with the occurrence of PCNSL, shorter progression-free 
survival and overall survival (Sasayama et al. 2012). 

CXCL12 and CXCL13 are known as homing factors for 
B-cells, production of CXCL13 in CNS is higher in patients 
with PCNSL and decreases with response to therapy (Fischer 
et al. 2009). 

The favourable prognostic factors include a single, well-
circumscribed intracranial lesion, the absence of meningeal 
or periventricular tumor, the absence of immunodeficiency,
and age younger than 60 years (Bhagavathi and Wilson 
2008).

Most common prognostic factors connected with brain 
tumors

When interpreting molecular biological and other factors, it 
is necessary to distinguish whether the factor is etiological 
or prognostic. Molecular markers influencing the prognosis
are shown in Table 2. 

Astrocytic tumors exhibit various genetic alterations. 
Mutation of TP53 is very common in astrocytomas and is 
most important in the formation of astrocytomas grade II 
(Hede et al. 2011; Wang et al. 2011). It is also connected 
with their progression to secondary glioblastoma (Ohgaki 
and Kleihues 2007; Furnari et al. 2007). p53 was shown to 
be a prognostic marker (Levidou et al. 2010). Homozygous 
deletion (but not polymorphisms) in CDKN2A and loss 
of expression has been linked to poor prognosis in patients 
(Simon et al. 2010; Goldhoff et al. 2012).

Alterations of the RB pathway play a critical role in gliom-
agenesis, tumor progression from lower-grade astrocytomas 
(Chow et al. 2011), has been associated with increased tumor 
proliferation and decreased survival (Kim et al. 2011). RB1 
has a more direct correlation with prognosis in lower-grade 
(II, III) astrocytomas than glioblastoma (Kim et al. 2011). 

PTEN is mutated or lost in 60–70% of high-grade glioma 
(Dey et al. 2008) and is associated with poor prognosis 
(Walker et al. 2011).

Progression from low-grade to anaplastic astrocytoma 
and formation of secondary glioblastoma is connected 
with a deletion on chromosomes 6, 9p, 11p, 17p, 13q, rarely 
with an amplification of 12q (Walker et al. 2011), decreased
expression of DCC (Jarjour et al. 2011), mutation of TP53 
(Ohgaki and Kleihues 2007; Furnari et al. 2007), amplifica-
tion of EGFR (Hu et al. 2013), increased expression of Tie-2 
receptor by endothelial cell (Fagiani and Christofori 2013) 

Table 2. Molecular markers modifying survival in primary brain tumors

Tumor type Better survival Shortened survival

Astrocytoma p27 expression, DCC expression VEGF, Tie-2 receptor, CDKN2A deletion, RB pathway alterations, 6, 9p, 
11p, 17p, 13q deletions

Glioblastoma IDH mutations EGFR, PTEN mutation, Ki-67, expression of cathepsin B, Angiopoietin 
4, p53 dysfunction

Oligodendroglioma loss of chromosome 1p and 19q CDKN2A, CDKN2C deletions, p53 dysfunction, 9, 10 deletions
Oligoastrocytoma – EGFR 
Ependymoma 9, 15q, 18 gain, 6 deletion 1q gain, CDKN2A deletion
Meningioma telomerase activity 1p, 6q, 9p, 10 and 14q deletions, TGF-α expression
Medulloblastoma TrkC mRNA, SHH, Wnt subgroup subgroup 3, 4, Ki-67, survivin
Lymphoma – STAT 6, higher IL-10 in CSF

CDK, cyclin dependent kinase; CSF, cerebro-spinal fluid; DCC, deleted in colorectal cancer gene; EGFR, epidermal growth factor receptor;
IDH, isocitrate dehydrogenase genes; PTEN, phosphatase and tensin homology; RB, retinoblastoma gene; SHH, sonic hedgehog pathway; 
STAT6, signal transducer and activator of transcription; VEGF, vascular endothelial growth factor receptor; Wnt, Wingless pathway.
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and increased expression of angiopoietin 4 (Brunckhorst et 
al. 2010), and others.

Mutations in the EGFR gene are associated with early 
relapses and poor prognosis (Hu et al. 2013). Expression 
of EGFR is higher in high-grade and poorly-differentiated
gliomas and together with amplification of EGFR is cor-
related with tumor progression (Hoelzinger et al. 2005; De 
Luca et al. 2008; Hofer and Lassman 2010; Hu et al. 2013).

Within the group of primary glioblastomas, IDH1 muta-
tions are rare and create a prognostically favorable subgroup 
(Weller et al. 2009).

MGMT promoter hypermethylation is associated with 
prolonged progression-free survival and overall survival in 
patients with glioblastoma treated with alkylating agents 
(Hegi et al. 2005; Herrlinger et al. 2006; Glas et al. 2009). 
Methylation status of the MGMT promoter is clinically 
the most relevant molecular parameter (Weller et al. 2009) 
and has been used as a biomarker to predict the sensitiv-
ity of gliomas to DNA alkylating chemotherapeutics (Von 
Deimling et al. 2011). 

Within the group of oligodendrogliomas, tumors with 
a combined loss of 1p and 19q create a group of good prog-
nosis tumors (Giannini et al. 2008; Velnar et al. 2009), in 
patients treated with radiotherapy plus chemotherapy, also 
when treated with radiotherapy only (Cairncross et al. 2006; 
Van den Bent et al. 2006; Kouwenhoven et al. 2009; Weller 
et al. 2009).

Deletions on chromosomes 9 and 10 accompany malig-
nant progression to anaplastic oligodendrogliomas (Stupp 
and Hegi 2007).

A CDKN2C deletion is present in anaplastic or mixed 
oligoastrocytomas. Tumors with such a deletion express 
poor chemosensitivity (Ducray et al. 2008). Patients with 
TP53 mutations (and intact 1p 19q chromosomes) have low 
efficacy rate of the chemotherapy treatment, thus having the
worse prognosis. On the other hand, 100% response rate was 
observed in patients with 1p 19q codeletion and intact TP53 
(Mueller et al. 2002).

Amplification of EGFR is more frequent in oligoastro-
cytomas and is connected with the worse overal survival 
(Kouwenhoven et al. 2009).

The most frequently observed aberration in pediatric
intracranial ependymomas is the gain of chromosome 1q 
(over 20%), what is a significant predictor of tumor aggres-
siveness and poor patient outcome (Kilday et al. 2009; Yao 
et al. 2011).

In ependymomas, homozygous deletion at CDKN2A is 
a predictor of unfavorable outcome (Korshunov et al. 2010). 
In contrast, gains of chromosomes 9, 15q, and 18 and loss 
of chromosome 6 are features indicating excellent chance 
of survival.

Telomerase activity in meningioma is associated with 
a higher recurrence rate and greater malignancy, and it may 

serve as a potential prognostic marker (Laurendeau et al. 
2010; Choy et al. 2011).

Deletions of 1p are very common in higher grade 
meningiomas and it is also identified with a higher recur-
rence rate. Gene amplifications were identified in atypical
and anaplastic meningiomas on chromosomes 1q, 9q, 12q, 
15q, 17q and 20q (Liu et al. 2005; Riemenschneider et al. 
2006; Marwin and Perry 2010; Yew et al. 2013). Increased 
CpG island hypermethylation, as an epigenetic alteration, 
has also been associated with malignant meningioma pro-
gression (Liu et al. 2005). Increased expression of TGF-α 
is associated with more aggressive tumor growth (Yew et 
al. 2013).

In medulloblastomas, high values (over 20%) of expression 
of Ki-67 (factor of cell proliferation, which reflects degree
of malignancy) are connected with a worse prognosis (Meur-
er et al. 2008). Expression of survivin correlates with poor 
clinical outcome and might be a predictive factor for recur-
rence or presence of metastasis (Abdel-Aziz et al. 2013).

Within the group of lymphomas, STAT6 is associated with 
tumor progression and a shortened survival (Rubenstein et 
al. 2006). An elevated level of IL-10 in cerebro-spinal fluid
(CSF) is highly associated with the occurrence of PCNSL, 
shorter progression-free survival and overall survival 
(Sasayama et al. 2012). Production of CXCL13 in CNS is 
higher in patients with PCNSL and decreases with response 
to therapy (Fischer et al. 2009). 

The favourable prognostic factors for lymphoma include
a single, well-circumscribed intracranial lesion, the absence 
of meningeal or periventricular tumor, the absence of im-
munodeficiency, and age younger than 60 years (Bhagavathi
and Wilson 2008).

Established prognostic factors for brain tumors, like age at 
the time of diagnosis, pathological grading, extend of surgery 
and Karnofsky performance score insufficiently predict the
outcome in most instances. That is the reason why there is
a need for more precise prognostic factors.

Conclusion

Recently there has been much progress in brain tumor re-
search, although therapy remains limited. A lot of numerous 
chromosomal, genetic and epigenetic aberrations occur at 
random frequency in gliomas. However, the clinical value 
of most glioma-associated molecular aberrations in terms 
of their significance as diagnostic, prognostic or predic-
tive molecular markers has remained unclear (Weller et al. 
2009).

Morphologically indistinguishable tumors can be differ-
entiated into molecular subtypes that might be eventually 
be used for identifying potential therapy targets and for 
determining prognosis.
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Effectiveness of brain tumor therapy is limited by the
poor ability of therapy agents to cross the blood-brain bar-
rier (Dai et al. 2003). Identification of molecular charac-
teristics of brain tumor gives opportunity for the targeted 
molecular therapy, for example EGFR inhibitors, PDGFR 
inhibitors, farnesyltransferase inhibitor, mammalian target 
of rapamycin, VEGFR inhibitors and other inhibitors of an-
giogenesis (Wen and Kesari 2004). Other forms of promising 
therapeutic methods are gene therapy and immunotherapy. 
These approaches remain at an early stage of development.
Ultimately, truly effective therapies will result from the use
of combination of treatment modalities.

Tumors with the same histological appearance often
display variable clinical behavior. Recently, molecular sub-
groups with various prognosis and therapy response have 
been identified. This is the reason why it is imperative to
probe deeper into the molecular genetic basis in search of re-
liable prognostic markers and therapeutic targets. A better 
understanding of the brain tumor biology is necessary in 
order to reveal ways of improving therapy and prolong suf-
ficient life quality of patients with brain tumors.
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