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The recent progress of molecular cancer diagnostics is re-
lated to achievements of genomics and proteomics. Identifying 
and understanding dynamic changes in the proteome related 
to disease development and therapy progression is the subject 
of clinical/disease proteomics [1, 2]. The low molecular weight
(<15 kDa) component of the blood proteome is a promising 
source of previously undiscovered biomarkers. Since this 
protein fraction is below the limit of effective resolution of
conventional gel electrophoresis, mass spectrometric analyses 
appear to be emerging methods of clinical proteomics and 
cancer diagnostics [3–6]. The approach that takes into consid-
eration protein fingerprints/profiles defined by mass spectra
but does not rely on particularly identified protein(s), could
be called proteome pattern analysis or proteome profiling. In
this approach multi-component sets of peptides or proteins 
(which are exemplified by ions registered at defined m/z values
in the mass spectrum) define specific proteomic patterns (or
profiles) that can be used for sample identification and clas-

sification, even though their particular components may lack
differentiating power when analyzed separately [7–9]. Mass
spectrometric methods particularly suitable for proteome 
pattern analysis rely on Matrix-Assisted Laser Desorption 
Ionization spectrometry (MALDI) and its derivative Surface-
Enhanced Laser Desorption Ionization spectrometry (SELDI) 
coupled to a Time-of-Flight (ToF) analyzer [10, 11]. The mile-
stone paper in this field was published in 2002 by the group
of Petricoin and Liotta, who showed that components of the 
serum proteome identified by mass spectrometry differentiate
patients with ovarian cancer from healthy individuals [12]. 
Since that time, in spite of a certain controversy regarding this 
pioneering work [13], numerous papers have been published 
that aimed to verify the applicability of mass spectrometric 
analyses of the serum (or plasma) proteome for cancer diag-
nostics [14–17]. The relevance of MALDI- and SELDI-based
serum (or plasma) proteome pattern analysis has been already 
successfully tested for several type of human malignancies, yet 
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Mass spectrometry-based analysis of the serum proteome allows identifying multi-peptide patterns/signatures specific
for blood of cancer patients, thus having high potential value for cancer diagnostics. However, because of problems with 
optimization and standardization of experimental and computational design, none of identified proteome patterns/signatures
was approved for diagnostics in clinical practice as yet. Here we compared two methods of serum sample preparation for 
mass spectrometry-based proteome pattern analysis aimed to identify biomarkers that could be used in early detection of 
breast cancer patients. Blood samples were collected in a group of 92 patients diagnosed at early (I and II) stages of the disease 
before the start of therapy, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and
analyzed using MALDI-ToF spectrometry, either directly or after membrane filtration (50 kDa cut-off) to remove albumin
and other large serum proteins. Mass spectra of the low-molecular-weight fraction (2-10 kDa) of the serum proteome were 
resolved using the Gaussian mixture decomposition, and identified spectral components were used to build classifiers that
differentiated samples from breast cancer patients and healthy persons. Mass spectra of complete serum and membrane-
filtered albumin-depleted samples have apparently different structure and peaks specific for both types of samples could be 
identified. The optimal classifier built for the complete serum specimens consisted of 8 spectral components, and had 81%
specificity and 72% sensitivity, while that built for the membrane-filtered samples consisted of 4 components, and had 80%
specificity and 81% sensitivity. We concluded that pre-processing of samples to remove albumin might be recommended
before MALDI-ToF mass spectrometric analysis of the low-molecular-weight components of human serum 
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none of identified peptide patterns/signatures was approved
for diagnostics in clinical practice so far [17–22].

Breast cancer is the most common malignancy in women 
comprising about 18% of all female cancers, which accounts 
for about a fifth of all deaths among women aged 40-50 [23].
The most important tools in screening and early detection of
breast cancer are mammography, ultrasonography and mag-
netic resonance imaging. Unfortunately however, up to 20% 
of new breast cancer incidents cannot be detected by these 
imaging methods [24], indicating a need for novel molecular 
markers suitable for screening and early detection of this 
cancer. A few studies have addressed the possible application 
of mass spectrometric serum analyses in diagnostics of breast 
cancer [25–30]. These studies proposed several proteome pat-
terns specific for patients with breast cancer, especially at late
clinical stages. In addition, mass spectrometry analyses of the 
blood proteome allowed the identification of proteome pat-
terns specific for breast cancer patients with different outcome
and response to therapy [31–33]. Unfortunately, proposed 
cancer signatures consisted of different peptide sets, which
most apparently limited direct applicability of such findings in
diagnostic practice. The most obvious reasons for discrepancy
among published data is lack of compatibility of methodologi-
cal approaches, both experimental and computational, that 
were implemented in such studies. Noteworthy, however, 
several peptides that differentiated cancer and control samples
appeared reproducibly when comparative analysis across dif-
ferent studies was performed [34, 30], demonstrating the high 
potential of mass spectrometry-based analyses of the blood 
proteome pattern in diagnostics of breast cancer once problems 
with optimization and standardization of experimental and 
computational design are solved.

Here we optimized experimental design of mass spec-
trometry-based proteome pattern analysis aimed to identify 
a potential biomarkers that could be applied in early detection 
of breast cancer patients. Serum peptides in the 2-10 kDa 
range were analyzed using MALDI-ToF spectrometry, the 
components of mass spectra were identified using the Gaus-
sian mixture modeling, and then classifiers were built that
allowed differentiation between cancer patients and healthy
persons. Proteome patterns specific for cancer patients were
established for either complete serum samples or samples 
depleted of albumin, and reliability of corresponding cancer 
biomarkers was compared. 

Materials and methods

Characteristics of patients and control groups. This study was
carried out at the Maria Skłodowska-Curie Memorial Cancer 
Center and Institute of Oncology, Gliwice Branch, between 
May 2006 and January 2008. Ninety-two patients diagnosed 
with clinical stage I or II breast cancer were included in the 
study, of average age 58.5 years (range 31-74 years). Patients 
were classified according to the TNM scale; the majority were
scored as T1 and T2 (47% and 45%, respectively) as well as N0 

and N1 (75% and 24%, respectively) and none had diagnosed 
metastases (all M0). Serum samples were collected before the 
start of therapy. One hundred and four female volunteers were 
included as a control group; they were required to be free of any 
known acute or chronic illness and were not treated with any 
anticancer therapy in the past. The average age in this group
was 54 years (range 32-77 years). The study was approved by
the appropriate Ethics Committee and all participants provided 
informed consent indicating their voluntary participation.

Preparation of serum samples. Samples were collected 
and processed following a standardized protocol. Blood was 
collected in a 5 ml Vacutainer Tube (Becton Dickinson), 
incubated for 30 min. at room temperature to allow clotting, 
and then centrifuged at 1000g for 10 min. to remove the clot. 
The serum was aliquoted and stored at -70°C. Directly before
analysis, samples were diluted 1:5 with 20% acetonitrile (ACN). 
One half of each sample was applied onto an Amicon Ultra-4 
membrane (50 kDa cut-off) in a spin column and centrifuged
at 3000g for 30 min. Different concentrations of ACN and
different types of membranes were tested; the best efficiency
of removal of high-molecular weight proteins and reproduc-
ibility of registered spectra was obtained for the combination 
described above (experimental data regarding all performed 
comparisons are not shown). 

Registration of mass spectra. Samples were analyzed using an 
Autoflex MALDI-ToF mass spectrometer (Bruker Daltonics,
Bremen, Germany); the analyzer worked in the linear mode 
and positive ions were recorded in the mass range between 
2 and 10 kDa. Mass calibration was performed after every
four samples using standards in the range of 2.8 to 16.9 kDa. 
Prior to analysis each sample was loaded onto a ZipTip C18 
tip-microcolumn by passing it through repeatedly 10 times, 
column was washed with water and then eluted with 1 µl of 
matrix solution (30 mg/ml sinapinic acid in 50% ACN/H2O 
and 0.1% TFA with addition of 1 mM n-octyl glucopyranoside) 
directly onto the 600 µm AnchorChip (Bruker Daltonics) plate. 
ZipTip extraction/loading was repeated twice for each sample 
and for each spot on the plate two spectra were acquired after
120 laser shots (i.e. four spectra were recorded for each sam-
ple). Spectra were exported from the Bruker FlexAnalysis 2.2 
software in standard 8-bit binary ASCII format; they consisted
of approximately 45,400 measurement points describing mass 
to charge ratios (m/z) for consecutive [M+H]+ ions and the cor-
responding signal abundances, covering the range of analyzed 
m/z values. For each sample the average of 4 replicate measure-
ments was taken for further computational analyses.

Data processing and statistical analysis. The pre-processing
procedures that included interpolation of missing or non-
aligned points, binning, trimming, removal of the baseline 
and the total ion current normalization were performed ac-
cording to procedures considering to be standard in the field
[35, 36]. In the second step the spectral components, which 
reflected [M+H]+ ions recorded at defined m/z values, were
identified using decomposition of mass spectra into their
Gaussian components. The spectra were modeled as a sum of
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Gaussian bell-shaped curves, then models were fitted to the
experimental data by a variant of the expectation maximiza-
tion algorithm [37], as described by Pietrowska et al. [30]. 
Based on the decomposition of the spectra into Gaussian 
components, the candidate classifier features were obtained by
treating the Gaussian curves as kernel functions and using the 
scalar product operator. The classification relied on the naive
Bayesian discrimination rule with the entropy-based feature 
selection principle [37] and in the constructed classifier a value
of 0.5 for the probability threshold was used to discriminate 
between cancer and healthy states. The size of the training
sample was changed from 20% to 90% of the whole dataset, 
and for each size the two-step procedure, training/validation, 
was repeated 1000 times to estimate the average error rate and 
its 95% confidence interval, which characterized the accuracy
of classification. In order to further characterize the quality
of classification, receiver operating curves (ROC) [38] were
computed by changing the value of the probability threshold in 
the Bayesian rule from 0.0 to 1.0, and averaging the obtained 
specificity/sensitivity proportions over 1000 random validation
experiments. We tested the performance of classification with
classifiers built of different numbers of spectral components
by estimating the level of total errors, as well the number of 
false positive and false negative classifications. Construction
and validation of a classifier is a statistical process, i.e. many
different classifiers built of a given number of spectral com-
ponents were tested (1000 random splits of the dataset), and 
those which pass the quality threshold could be built of dif-
ferent spectral components. Thus, to identify the components
that are the best determinants of a specific proteome pattern
we looked for the most frequent components in classifiers that
correctly classified samples.

Results and discussion

Mass spectra of complex protein mixtures such as serum 
can be obtained after direct application of a sample to the spec-
trometer, or samples can be pre-processed to deplete or enrich 
certain protein fractions as exemplified by the SELDI type of
analyses or by approaches where selected protein fractions are 
first separated or purified by chromatography (e.g. a LC-MS
approach). Albumin is the most abundant serum protein, and 
together with 9 other major proteins comprises more than 90% 
of serum proteins by mass [39]. Albumin is a typical carrier 
protein that binds numerous low-molecular-weight peptides, 
and for this reason a strategy based on purification of albu-
min followed by recovery of cargo peptides and their mass 
spectrometric analysis has been proposed [40]. On the other 
hand, although albumin is not directly targeted in the majority 
of spectral analyses it apparently affects the sensitivity of the
low-molecular-weight serum peptide analysis because of its 
high abundance. For this reason removal of albumin, as well as 
other high-molecular-weight serum proteins, could be a useful 
approach to enhance the sensitivity and facilitate the reliability 
of MS analyses of the low-molecular-weight serum compart-

ment. Here we implemented dilution of serum samples with 
a denaturing organic solvent (acetonitrile) that destroyed the 
majority of protein interactions and allowed analysis of indi-
vidual peptides dissociated from (not interacting with) other 
proteins (e.g., albumin). Albumin and other high-molecular-
weight serum proteins were removed by membrane filtration
through Amicon Ultra-4 spin columns with a nominal cut-off
of 50 kDa. Both complete input and filtered samples were ana-
lyzed by SDS-PAGE and subjected to MALDI-ToF analysis in 
the range of 2-10 kDa. Figure 1 shows results of comparative 
analyses of complete non-filtered (CS) and filtered (FS) serum
from the same healthy donor, performed by either SDS-PAGE 
(panel A) or mass spectrometry (panel B). Filtering allowed 
removing of 80-90% of the albumin (Fig. 1A) and, as expected, 
affected the structure of the mass spectra; more peptides in the
low-molecular-weight serum component could be detected in 
the filtered sample. This difference was clearly visible when the
differential spectrum was obtained by subtracting the spec-
trum of the non-filtered from that of the filtered sample (Fig.
1B, bottom graph). The average of the differential spectra for
all the 196 individuals is shown in Figure 1C; statistical analy-
sis by the Lilliefors normality test showed a high significance
(p<0.00001) of the structural differences between the spectra
for filtered and non-filtered serum samples. For this reason,
both type of serum samples were used in parallel for identi-
fication of breast cancer markers, and the quality of cancer
classifiers obtained for such samples was compared.

Computational processing of protein profiles registered
as mass spectra is always a multi-step process where spectral 
features are extracted after the pre-processing operations,
and then they are used for further analyses, e.g., constructing 
spectral classifiers. Characteristic feature of MALDI ionization
is that majority of registered peaks correspond to mono-pro-
tonated peptide/protein molecular ions [M+H]+ described by 
m/z values that reflect actual molecular weights increased by
the mass of the proton. However, when MALDI mass spectra 
are recorded in a linear mode over a wide range of m/z values, 
like the 2-10 kDa range in this study, the expected mass ac-
curacy is relatively low and corresponds up to a few Daltons. 
In consequence, the relative broadening of spectral peaks 
recorded for the [M+H]+ ions could reflect the low resolu-
tion of the analyzer and might result in overlapping of ions 
originating from protein/peptides of very similar molecular 
masses. In addition, because of technological imperfections 
there might be some shift in the positions of peptide ions be-
tween measurements, which adds more complexity to analyses 
of large datasets. For this reason, some approaches used for 
extraction of spectral features from large datasets relay on 
alignment of identified spectral peaks [35], which requires
numerical “stretching” of spectra before further analyses. Here 
we decided to implement an original mathematical procedure 
based on modeling average spectra as the sum of Gaussian 
components then fitting actual experimental spectra into such
a model [30]. For the mass spectra analyzed in the present 
work we tested models with different numbers of components
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(up to 800), and found that 300 components ensured both suf-
ficient fidelity of the model and its efficient computation (not
shown). As a result of computation an “average” spectrum was 
decomposed into spectral components characterized by the 
molecular weight (m/z values of recorded [M+H]+ ions) and 
the interval where fit corresponding peaks in at least 95% of
actual spectra expected in the dataset (+/-95% CI). The result-
ing spectral components reflect peaks recorded in multiple
samples during mass spectrometric analysis, which contained 
either single peptide/protein ions or a combination of a few 
ions of very similar m/z values. This approach allowed us to
avoid artifacts resulting from the peak alignment and facilitat-
ed quantitative analysis of data by simple assessment of signal 
volumes that fitted to a given component within its 95% CI.
Having “extracted” and quantified spectral components, one
could find certain whose abundances were significantly differ-
ent between groups of samples (e.g. between cancer patient and 
healthy controls), which could be defined as “differentiating”.
However, to obtain more reliable classification of samples we

used spectral components to build multi-component classifiers
that determined proteome patterns characteristic for defined
groups, and looked for the most frequent components in clas-
sifiers that annotated samples correctly.

The performance of classification with classifiers built of 
different number of components (features) was tested by
estimating the level of total errors, as well the number of false 
positive and false negative classifications. Figure 2 shows
estimations of the total error rate as a function of the com-
ponent/feature number for classification that used either
complete (panel A) or membrane-filtered albumin-depleted
samples (panel B). The best performance was observed with
classifiers built of 8-12 components for the non-filtered
samples (Fig. 2A) and of 3-6 components for the membrane-
filtered samples (Fig. 2B). Such classifiers also represented
minima in the numbers of false positive and false negative 
classifications (not shown). For further analyses we selected
classifiers built of either 8 components or 4 components, for
spectra of complete and of membrane-filtered albumin-de-

Figure 1. Characteristics of serum samples. Serum specimen from the same individual healthy person, both complete input (CS) and membrane-filtered
(FS), was analyzed by SDS-PAGE (panel A) or MALDI-ToF mass spectrometry in the low molecular-weight range (panel B). To obtain the differential
spectrum (bottom graph) the spectrum of the complete sample was subtracted from that of the membrane-filtered sample. The average of differences
between the spectra of complete and membrane-filtered samples for all 196 individuals is also shown (panel C).



541INFLUENCE OF ALBUMIN ON SERUM PROTEOME SPECTRA

pleted samples, respectively. In order to further characterize 
the quality of classification, receiver operating curves (ROC),
which are routine in medical applications (e.g. for estimation 
of reliability of bio-markers [38]), were computed to allow 
estimation of the sensitivity and specificity of the classifier. We
computed ROC curves for direct comparison of the accuracy 
of classification of breast cancer patients based on analyses of
either complete or membrane-filtered serum samples (Fig.
2C). According to our estimations, MS analysis that based on 
complete serum allowed to classify cancer patients with 81% 
specificity and 72% sensitivity, while that based on mem-
brane-filtered serum had 80% specificity and 81% sensitivity.
Importantly, these estimations were based on the highly rigid 
Monte-Carlo resampling method; when the less rigid, yet 
more frequently used, leave-one-out method was used the 
specificity/sensitivity of classification increased to 82%/89%
and to 78%/91% for complete serum and membrane-filtered
serum, respectively.

Assuming the different structures of mass spectra which
apparently reflected the presence of unique peptide peaks/

components in complete and membrane-filtered albumin-
depleted serum (Fig. 1), we aimed to identify differentiating
components that built classifiers and were present in these two
types of sample. Essentially, we looked for the most frequent 
components in classifiers that correctly classified breast cancer
samples. Eight most important components of the classifier for
complete serum and four most important components of the 
classifier for filtered serum are characterized in Table 1. All of
these were present in at least 40% of classifiers built of a given
number of features and were marked along the whole mass 
spectra of both types of samples (Fig. 3A and 3B). Interest-
ingly, such differentiating components were unique for either
complete or membrane-filtered albumin-depleted serum (with
possible exception of components 2876.05 Da and 2865.54 
Da present in complete and filtered samples, respectively).
Importantly, these most frequent components of cancer classi-
fiers had very high potency to differentiate control and cancer
samples by themselves; the statistical significance of differences
obtained in univariant analyses for these three peaks were at 
the level of p-values from 10-20 to 10-5 (they remained highly 

 

 Figure 2. Estimation of the performance of cancer classification. The error rate was plotted against the number of features in the classifier for complete
(panel A) and membrane-filtered samples (panel B). Shown are average error rates and 95% confidence intervals calculated based on 1000 random
validation experiments with 50:50 training/validation data splits. Panel C shows estimation of the sensitivity and specificity of the classification based on
complete (squares) and membrane-filtered (circles) samples. ROC curves were computed by changing the value of the probability threshold in the naive
Bayesian classifier from 0.0 to 1.0, and averaging the specificity obtained versus sensitivity rate over 1000 random repeats of training and validation. In
the enlarged area 95% confidence regions are shown. The percentage of true positives corresponds to the sensitivity, while (100 minus the percentage
of false positives) values correspond to the specificity.
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Table 1. Characteristics of spectral components that differentiated samples from breast cancer patients and healthy controls. Shown are the most fre-
quent components (m/z values) and their 95% confidence intervals, and relative frequencies in cancer classifiers built of 8 or 4 features. The p-values are
for differences between patients and healthy controls measured by the Mann-Whitney test for each individual feature (also shown after the Bonferroni
correction against multiple testing). 

m/z - 95% CI + 95% CI p-value corrected p-value frequency

Complete serum sample (CS)

3314.50 3313.69 3315.31 5.37e -13 1.79e-11 96.8%
2518.60 2516.55 2520.65 3.48e -07 1.04e-04 78.6%
7649.70 7648.28 7651.12 3.47e -11 1.04e-08 76.6%
2509.27 2508.63 2509.91 3.38e-06 1.01e-03 62.4%
4363.02 4362.02 4364.02 1.28e-08 3.84e-06 61.7%
2876.05 2874.13 2877.97 6.85e-09 2.06e-06 60.6%
4967.33 4965.29 4969.38 3.71e-08 1.11e-05 47.6%
9936.24 9932.63 9939.85 1.45e-10 4.35e-08 41.9%

Membrane-filtered albumin-depleted sample (FS)

2865.54 2864.46 2866.62 4.19e-20 1.26e-17 99.1%
3578.73 3577.42 3580.04 5.84e-18 1.75e-15 91.4%
3895.05 3894.12 3895.98 1.58e-11 4.74e-09 41.7%
7473.82 7473.01 7474.63 1.05e-05 3.15e-03 41.0%

 

 
Figure 3. Characterization of essential differentiating components of the spectra. The most frequent differentiating components are marked with arrows
along average mass spectra of complete (panel A) and membrane-filtered (panel B) serum samples. Panel C presents selected spectral components;
shown are actual spectral plots for cancer patients (red/black lines) and healthy controls (green/grey lines), as well as modeled Gaussian kernels (blue/
solid curves). X-axes represent the m/z values, Y-axes represent intensities in arbitrary units. Box-plots (panel D) represent quantification of the level
of Gaussian kernel-based spectral features in samples from cancer patients (red/black) and healthy controls (green/grey) (shown are minimum, lower 
quartile, median, upper quartile and maximum values; outliers are marked by asterisks). 
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significant after application of the Bonferroni correction for
multiple testing; Table 1). Almost all classifiers built for com-
plete serum (97%) contained 3314.50 Da component, while 
2865.54 and 3578.73 components were present in almost all 
classifiers built for filtered albumin-depleted serum (99% and
91%, respectively). The frequency of particular spectral com-
ponents in cancer classifiers could be different when different
algorithm was selected for classification in the same dataset.
Noteworthy, however, irrespective of used algorithm, i.e. the 
naïve Bayesian used in this work versus a modification of Sup-
port Vector Machine used in Pietrowska et al. [30], frequencies 
of the most essential components (namely m/z=2865.54 and 
m/z=3578.73) remained essentially the same. Figure 3C shows 
fragments of mass spectra in the near vicinity of the model 
components that were the most frequent features of the breast 
cancer classifiers; actual spectral lines for samples from all 196
individuals are shown together with the Gaussian kernel. The
levels of Gaussian kernel-based spectral features in samples 
from individual breast cancer patients and healthy controls 
were quantified and are shown as box-plots (Fig. 3D).

In summary, when either complete or albumin-depleted 
(i.e. membrane-filtered) serum samples were used for clas-
sification  distinct spectral components built classifiers that
differentiated cancer and control samples. Such differences
could result from a different structure and/or composition of
complete and albumin-depleted serum due to the depletion 
procedure, and might be an intrinsic feature of the spectrum 
generation process as well. One should expect that essential 
components of the low-molecular-weight part of the serum 
mass spectrum are “cargo” peptides normally carried by 
albumin, whose removal would result in their depletion and 
contribute to the lack or lowered levels of certain components 
in membrane-filtered samples. On the other hand, the pres-
ence of albumin in a sample apparently reduces the efficiency
of ionization and detection of less abundant peptides [39], 
which would contribute to the appearance or increased levels 
of some components in membrane-filtered samples. Note-
worthy, MALDI-ToF mass spectra of peptides present in both 
type of preparation could be used for identification of serum
from patients with early stages of breast cancer, and that both 
types of sample could be used for classification with rather
similar sensitivity and specificity. However, classification based
on membrane-filtered albumin-depleted serum performs
slightly better and relies on a less complex classifier, and thus
pre-processing of human serum to remove albumin before 
MALD-ToF mass spectrometric analysis of the low-molecular-
weight components could be recommended. 
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